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ABSTRACT. Since the initial study of folds in the hanging wall of
the Pine Mountain thrust sheet in the southern Appalachians 50 yrs
ago by J. L. Rich, it has become clear that many map-scale folds in
sedimentary sequences are formed by the bending of fault blocks as
they ride over non-planar fault surfaces. These structures, here called
fault-bend folds, include “reverse-drag” or ‘‘rollovers™ asscciated
with normal faults that flatten with depth and the bending of thrust
sheets as they ride over steps in decollement. This paper presents a
number of geometric and kinematic properties of parallel fault-bend
folds, the most important of which is a relationship between fault
shape and fold shape for sharp bends in faults. These relationships
are useful tools for developing internally consistent cross sections
in areas of suspected fault-bend folding, particularly in fold-and-
thrust belts.

INTRODUCTION

Many large-scale folds that have formed at shallow crustal levels,
above the brittle-plastic transition, have origins that are intimately re-
lated to slip on adjacent faults. The important classes of fault-related
folding include: (1) buckling caused by compression above a bedding-
plane decollement, (2) fault-bend folding caused by bending of a fault-
block as it rides over a non-planar fault surface, and (3) fault-propagation
folding, caused by compression in front of a fault tip during fault propa-
gation. Because of the shallow-level non-plastic nature of this folding,
layer thickness is commonly preserved during deformation, that is, the
folding is parallel. This report presents a number of useful geometric and
kinematic properties of parallel fault-bend folding. A few examples of
their application to real structures are included, many more are published
elsewhere together with abbreviated [ragments of this theory (Suppe, 1979,
1980a, b; Suppe and Namson, 1979; Namson, 1981).

FAULT-BEND FOLDING

If a fault surface is not planar there must be distortion within at
least one of the fault blocks as they slip past one another. The distortion
develops because the two blocks remain in tight contact along the fault
surface during slip, the rocks not being strong enough to support large
voids. If the rocks are layered they may fold in response to riding over a
bend in a fault. We call this mechanism of folding fault-bend folding.
This mechanism is well known in fold-and-thrust belts associated with
steps in decollement, in so-called “reverse drag” associated with flattening
normal faults (fig. 1), and in “flower structures” associated with bends in
strike-slip faults. Fault-bend folding is closely related geometrically to
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folding of preexisting faults and refraction of axial surfaces across angular
unconformities (fig. I).

This report presents an idealized two-dimensional geometric descrip-
tion of fault-bend folding, which has applications to all these phenomena
(fig. 1). But the emphasis here will lie almost entirely with folds produced
by thrust faults and their imbrications. Several sections on applications
illustrate the quantitative use of the theory to decipher subsurface map-
scale structure in fold-and-thrust belts.

FOLDING DUE TO A SIMPLE RAMP IN DECOLLEMENT HORIZON

Thrust faults do not run forever along a single bedding-plane de-
collement. The thrust normally steps up in the direction of slip to a higher
decollement or to the land surface. As the thrust sheet rides over the
bends in the fault it must fold. This fact was clearly perceived by Rich
(1934), who applied the concept of fault-bend folding to the interpreta-
tion of folds in the Pine Mountain thrust sheet of the southern Appa-
lachians (fig. 2). Rich realized that the Powell Valley anticline is the result
of a ramp in decollement of the Pine Mountain thrust from the Lower
Cambrian Rome Formation to the Devonian Chattanooga Shale. Analo-
gous folding due to ramps in decollement, both across and along strike,
is now widely recognized in many fold-and-thrust belts (for example,
Rodgers, 1950; Douglas, 1950; Laubscher, 1965; Gwinn, 1970; Harris,
1970; Perry, Harris, and Harris, 1979; Roedder, Gilbert, and Witherspoon,
1978; Suppe, 1976, 1980a, b; Suppe and Namson, 1979).

The kinematics of fault-bend folding caused by a simple step in de-
collement along a thrust fault are illustrated in figure 3. Points X and Y,

A. Step in decollement on thrust fault. B. Reverse drag on flattening normal faults.

C. Folding of faults. D. Folding of angular unconformities.

Fig. 1. Examples of some common types of fault-bend folds (A-C) and the geometri-
cally related structure of a folded angular unconformity (D).
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Fig. 3. Kinematic development of fault-bend folds in response to a simple step in
decollement (after Suppe and Namson, 1979).
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which are lines in 3-dimensions, bound the cross-cutting fault segment in
the foot-wall block; points X’ and ¥’ bound the cross-cutting segment of
the hanging-wall block. Note that the folds are confined to the hanging-
wall block. Axial surfaces 4 and B terminate along the fault at points
(lines) X and Y in the foot-wall block; similarly axial surfaces A’ and B’
terminate along the fault at points (lines) X’ and Y’ in the hanging-wall
block.

According to the simple geometry of figure 3, two kink bands, 4-4’
and B-B’, form at the instant of initiation of slip. As slip continues, both
kink bands grow in width, and the structural relief increases. Note that
the slip is not constant along the fault but decreases about 60 percent on
the left-hand side, because slip is taken up in kink band 4-4".

Axial surfaces 4 and B, associated with points X and Y in the foot-
wall block of figure 8, remain fixed with respect to the foot-wall block;
the beds of the hanging-wall block roll through these two axial surfaces
as slip proceeds. In contrast, axial surfaces 4” and B’, which terminate at
points X’ and Y’ in the hanging-wall block, are fixed in the hanging-wall
beds and move with the thrust sheet.

The kinematics are a bit more complex, however, because when point
Y’ reaches point X, axial surface B’ suddenly stops moving with the hang-
ing wall and becomes fixed with respect to the foot wall at point X. At
the same instant axial surface 4 is released from point X in the foot wall
and begins to move with point ¥’ in the hanging wall. When Y’ reaches
point X the kink bands 4-4" and B-B’ cease to grow, although rocks still
roll through axial surfaces B and B’.

Actual fault-bent folds may not develop precisely as shown diagram-
matically in figure 3, because the kinematic details depend on the me-
chanical properties of the layers and the way in which the forces are ap-
plied. The drawings in figure 3 were constructed with the assumptions of
(1) preservation of layer thickness, measured normal to bedding, (2) no
net distortion where the layers are horizontal, and (3) conservation of bed
length. Inclined layers have undergone only layer-parallel slip. We call
this set of three assumptions parallel behavior in the following discussion.

Many fault-bend folds in unmetamorphosed sedimentary rocks are
found to obey the three assumptions of parallel behavior; for example,
map, well, and seismic data from the Pakuashan anticline in the Neogene
basin of western Taiwan (fig. 4) can be fit to a cross section satisfying the
assumptions. The cross section of the Pine Mountain thrust sheet (fig. 2)
also obeys the assumptions of parallel behavior.

In most of the following discussion we assume parallel behavior but
emphasize that many cases can be found for which the assumptions are
invalid, for example in rocks that exhibit slaty cleavage. We are not de-
veloping a mechanical theory of fault-bend folding but rather a geometric
and kinematic description of a specific material behavior known to be
closely approximated in some fault-bend folds, such as the Pine Mountain
thrust sheet (fig. 2). The usefulness of the theory comes from its combina-
tion of simplicity and rather wide applicability. Similar, but more com-
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plex, theories can be formulated to deal with modes of deformation other
than parallel behavior. The mode of deformation must be determined by
field and other observations (for example, Laubscher, 1975, 1976).

PARALLEL KINK FOLDING BY CHANGE IN DIP OF A FAULT

Introduction.—In many practical as well as scientific problems of
subsurface exploration we wish to predict the complete shape of a system
of folds and faults given presently available information, prior to con-
tinued exploration. It is a common situation for the structure to involve
slip on non-planar faults or folding of preexisting faults. Both these
situations are geometrically closely related to the structure shown dia-
grammatically in figure 3, although most situations appear to be more
complex because of more bends in the faults or several branches to the
faults. Even the classic Pine Mountain thrust (fig. 2) is more complex
than the simple step in decollement of figure 3. In order to develop more
precise predictions of subsurface structure, especially in fold-and-thrust
belts, it would be of great practical help to have a relationship between
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Fig. 4. Cross section of Pakuashan anticline, westcentral Taiwan, based on surface
mapping, well data, and seismic data.
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shapes of folds and the shapes of faults that are responsible for the folds
through the mechanism of fault-bend folding.

In the following section we develop a simplified, yet widely applic-
able, two-dimensional geometric and kinematic theory of folding due to
slip past a series of sharp bends in a fault (fig. 5). The theory is rather
general. All shapes of sharp bends can be considered; curved bends can
be treated as a series of sharp bends. Both convex and concave fault bends
and associated anticlinal or synclinal folds can be treated. Even folding
of faults, together with their adjacent beds, can be studied.

The primary geometric assumptions of the two-dimensional theory
are sharp fault bends, conservation of area, and constant layer thickness
normal to bedding (fig. 5), which imply conservation of bed length, de-
formation by layer-parallel slip, and angular kink (chevron) folds of in-
finite curvature and straight limbs. By these assumptions the axial surface
bisects the angle between the two fold limbs (y, = 7, in fig. 5); we call
the angle y the axial angle. Many actual fault-bend folds closely approxi-
mate these assumptions, as mentioned in the previous section, thus giving
the theory some usefulness. More complex theories involving unequal axial
angles or three-dimensional fault-bend folds may be developed with more
effort. The next section presents the mathematical details. Applications
are given in later sections.

Details of two-dimensional geometry.—We solve the geometric prob-
lem in two dimensions of what change in dip ¢ of a cross-cutting fault
will produce a fold of a given axial angle (y, = v,) (fig. 5). The initial
angle between bedding and the fault, prior to slipping past the bend, is
0 (fig. 5). It is assumed that the bedding thickness remains constant during
folding, that the fold is angular, and that the deformation conserves area.
It follows that the deformation is by slip parallel to bedding and that bed
length is preserved during deformation. General shear within a fault-
block is excluded under many circumstances by the assumptions, and for

~

CHANGE IN ~
DIP OF FAULT
@

Fig. 5. Geometry of a generalized parallel-kink fault-bend fold (after Suppe, 1979).
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the present we exclude all shear unrelated to riding over fault bends.
Later we consider several important ancillary phenomena that involve
additional layer-parallel shear.

The area of the deformed beds (triangle a b d in fig. 6) must equal
original undeformed area (triangle a b c). Similarly, deformed and unde-
formed bed lengths must be equal: thus lines b d and b ¢ are both of
length [ in figure 6. Given these two constraints we can solve for the
change in dip of the fault ¢ in terms of @ and v (figs. 5 and 6).

Line segment b d of length I is divided at point ¢ into two segments
b e and e d (fig. 6) where

~ Ising
~ sin (2y—0) M
by the law of sines. Similarly applyinz the law twice
. [ siny sing
ed= sin(¢p+y—0) sin(2y—0) @
Adding eqs (1) and (2) we have
_ ., Ising I siny sing
bered=1="q0y-0) T Singty—sn@y—g O
Expanding this equation we get
o sinf) siny sing @)

T sin(2y—0) + sin 2y—@) [singcos(y—0) + cospsin(y—6)]
Multiplying by the denominator of the second term on the right and
dividing by sin ¢ we obtain

sin(2y—6) [cos(y—0) + cotsin(y—0)]
= [cos(y—0) + cotgsin(y—6)] sinf + siny, (5)
rearranging we find
cos(y—0) [sin(2y—6) — sinf] — siny

— coth = sin y—@) [sin(2y—0) — sing)] . X

Finally we have
b = tan—1 —sin(y—0) [sin(2y—6) — sinf] :I
cos(y—0) [sin(2y—@) — sinf] — siny

™

The new angle 8 between the fault and bedding, after slip past the
bend in the fault, is given by the equation

B=0—¢+(180°-2)) =0 —+5 (®)

where § = (180°—2y) is the change in dip across the axial surface. In some
practical cases the angle B is more casily estimated than 6, ¢, or even v.
In these cases eq (8) is a useful addition to eq (7).

We must establish certain sign conventions and ranges of angles. We
define 90°=0=—90°, 180°=y=0°, 90°=¢$=—-90°, 180°=B=-180°, and
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180°=6=—180°. Briefly, ¢ is measured from the projection of the first
fault to the second fault and is positive for folds that are convex to the
fault (“‘anticlines”). 8 and 6 are positive in the same direction — clockwise
or anticlockwise — as ¢ and are both measured from the fault to the same
side of the bed (note || < 90°). § is the same sign as ¢ if its direction is
the same as ¢ (positive for anticlines). 8 is measured from the projection
of the bed in the same direction as 6.

The above sign conventions are unduly complex for most practical
problems not involving slip over multiple positive and negative fault
bends (+ and — ¢). The problem is simplified if we consider all folds
convex toward the fault as “synclines” and all folds concave toward the
fault as “anticlines”; we define 90°=y=0°, 90°=¢=0°, 90°=0=-90°,
180°=82-90°, and 180°=86=0°. B and 6 are measured from the fault to
the same side of the bed (note |f| < 90°) and are positive for “anticlines”
and negative for “synclines”. Figure 7 presents graphs of eqs (7) and (8),
using the simplified sign conventions. ‘“Anticlines” are to the left, and
“synclines” are to the right.

Equation of a simple step in decollement.—Folds that involve a sim-
ple step from one decollement to another (fig. 3) are sufficiently important
that it is useful to derive the fault-bend folding relationship (eq 7) for
this special case, namely

$=0 (9)

Combining with eq 4 we obtain
sinysinf

sin (2y—6) = sinf + [sin@cos(y—0) + cosfsin(y—6)]

(10)

Simplifying using trigonometric identities we obtain

_ sin2y
100 = 5 cosy + 1 an
and
¢ =0=tan—? [ﬂ] 12)
1 + 2cos?*y

which is the relationship between cutoff angle 6 or fault bend ¢ and fold
shape y for a simple step in decollement. A graph of eq (12) is given as
part of figure 7.

Discussion of the fault-bend folding equations.—The above equa-
tions, especially 7, 8, and 12, have many practical applications in attempts
to predict the subsurface geometry of structures. The assumptions are two
dimensions, conservation of area and bed length, and no general affine
shear. These imply slip parallel to bedding. If a structure cannot be suc-
cessfully described by these equations then either it is not a fault-bend
fold, the assumptions are not valid, or the structure is too complicated to
solve given the limited data available. Thus the equations are useful
whether or not the structure is actually of the parallel-kink fault-bend
mechanism, because they are a standard against which the structure can
be quantitatively compared.
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A graph of eqs (7), (8), and (12) has been prepared (fig. 7) to allow

quick visual analysis of the possible range of solutions to a given problem.
For example, if an anticline has an observed axial angle y of 83° then an
associated change in fault dip ¢ cannot be greater than about 16° to 17°;
furthermore ¢ of less than 10° is not possible for a large range of § and S.
If the bend is a simple step, then the cutoff angle § = ¢ is 14°. Thus the
range of possible solutions can be quickly assessed. For this reason it is
more efficient in most practical applications to use the graph than to use
the equations directly.

The graph in figure 7 plots § against vy showing lines of constant ¢
and B. A notable feature of the graph is that y is a double-valued function
of 6 and ¢ for “anticlines”; thus, for a given fault bend ¢ and initial cut-
off angle @ there are two possible shapes in the fold y. For example, if § =
¢ = 20°, then the axial angle y can be 78° or 32°; the larger values of y
are called first-mode folds, and the smaller values are called second-mode
folds (fig. 8). The boundary between the two modes on the graph is

\

. /FIRSTfMODE AXIAL SURFACE

\(/ SECOND-MODE AXIAL SURFACE

N

Fig. 8. The two modes of fault-bend folding for § = ¢ = 25° (after Suppe and
Namson, 1979).
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marked with a dashed line (fig. 7). It may be questioned whether or not
both geometrically possible modes are mechanically possible; for example,
the first mode might be favored by its smaller bending and bedding-plane
slip. Nevertheless, there is some indication that second-mode folds might
form; for example, Suppe and Namson (1979) present some subsurface
interpretations involving second-mode simple-step folding. It is important
to be cautious in interpreting folds with steep to overturned front limbs
as second-mode fault-bend folds, because fault-propagation folds have a
shape that is difficult to distinguish in the subsurface from second-mode
fault-bend folds, as will be discussed elsewhere. Our present experience is
that most fault-bend fold structures are first-mode folds or complex im-
bricated stacks of first-mode folds.

A second important aspect of the graph (fig. 7) is that for a given
initial cutoff angle 6 there exists a maximum angle of fault bend ¢ for
which layer thickness is preserved in anticlinal folds because of the double-
valued nature of eqs (7) and (12). For example in the case of a simple
ramp in decollement the maximum angle of stepup (¢p=6) is 30° without
thinning of beds (non-parallel folding). As another example, a reverse
fault stepping up at 55° to bedding cannot flatten more than 4° without
experiencing local layer thinning or secondary faulting. Therefore, in-
formation on layer thickness around suspected fault-bend folds offers a
potential constraint on possible fault bends at depth. The range of possi-
ble fault bends for which layer thickness is preserved is even more re-
stricted in cases of multiple imbrications, as is discussed later in this
report.

Simple application of fault-bend fold equations.—The most straight-
forward applications of the fault-bend fold equations are in the solution
of well-constrained problems or parts of problems involving simple bends
in faults. For example, the fold shape (y) (fig. 5) may be well known, and
we may wish to compute the shape of a fault (¢) capable of producing the
fold, given the orientation of the fault (f or 8) in one part of the structure.
An actual example is given in the following paragraphs. The equations
also may be used to solve more complex problems of imbricate structures
as is explained near the end of this report.

Figure 9 presents as an example an incomplete cross section of the
crest of the Hukou-Yangmei anticline in the fold-and-thrust belt of west-
ern Taiwan. The cross section is constrained by detailed surface mapping,
two wells, and some seismic data. Well A is unusual because it encountered
a double thickness of the distinctive Pliocene Chinshui Shale and normal
thicknesses of formations below the Chinshui Shale, suggesting that the
small fold on which well A sits does not extend below the Chinshui Shale.
Let us make the hypothesis that the fold is a fault-bend fold associated
with a fault that repeats the Chinshui Shale in well A; we now attempt to
test this hypothesis.

This example from Taiwan is typical of simple applications of the
fault-bend fold equations; we have a general structural hypothesis, and
we wish to test it quantitatively. In order to do this we must guess a spe-
cific solution. Two guesses are shown in figure 10, both involving the
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Fig. 9. Basic surface and subsurface data, Hukou-Yangmei anticline, northern Taiwan.

SOLUTION 1
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/

L,

[\ 9

!
|

Fig. 10. Two potential solutions for the thickening of Chinshui Shale by fault-bend folﬁing,
Hukou-Yangmei anticline, northern Taiwan. '
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simple step of a thrust from one decollement to another in the Chinshui
Shale. In solution 1 a thrust steps up to the north, whereas in solution 2
a thrust steps up to the south. The critical angular observations are that
the dip at the base of the Chinshui Shale and below is 5°, whereas the
minimum dip of the top of the Chinshui Shale, between the two wells, is
32° with similar but slightly lower dips observed at the surface off the
line of section. Therefore we choose 32°—5° = 27° as § = ¢ in solution 1
and B in solution 2. Using figure 7 we determine 8 = 34° for solution 1
with 34°—5° = 29° as the predicted surface dip. This surface dip is sub-
stantially greater than the observed surface dip of about 16° so we discard
solution 1 as incorrect. Using figure 7 we determine ¢ = 0 = 22° for solu-
tion 2 and 22°--5° = 17° as the predicted surface dip, in good agreement
with observation. We therefore consider solution 2 viable.

Further fault-bend computations are possible in this example. An
anticline is present at depth, as shown by these and other wells. We now
compute how the shallow fault in solution 2 will be folded by the deeper
anticline (y = 58°). The crosscutting fault block is on the footwall, convex
toward the fault; therefore it corresponds to a “synclinal” geometry in
figure 7, as may be seen by viewing figure 10 upside down. We observe
0 = —22° and y = 58° for a “synclinal” geometry; therefore we determine
from figure 7 that ¢ = 57° and B8 = 15°, which are in reasonable agree-
ment with surface dips. A final version of the Hukou-Yangmei cross sec-
tion (fig. 11), incorporates solution 2.

WELLA WELLB

NORTH f ﬁ#pa_%/ﬂ
. ~—
0 ™

| N ] SEA LEVEL

KM

Fig. 11. Completed fault-bend folding interpretation of the shallow part of Hukou-Yangmei
anticline, based on solution 2, figure 10.
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ADDITIONAL ASPECTS OF PARALLEL-KINK FAULT-BEND FOLDS

In the present section we treat additional aspects of the geometric
and kinematic description of parallel-kink fault-bend folds. These include
(1) change in fault slip across a fault-bend fold, (2) multiple bends in a
single fault, (3) shearing of fault-bend folds by layer-parallel slip in the
thrust sheet, and (4) the branching of axial surfaces within the folded
sheet. One further aspect, which is so important that it is treated in a
separate section, is the geometric description of parallel-kink fault-bend
folds involving multiple fault imbrications. This topic is discussed in the
final section of this report, “Imbricate Fault-Bend Folding.”

Change in fault slip across a fault-bend fold—Fault slip is not con-
served -across a fault-bend fold if the fault cuts across bedding in the
folded sheet. The slip may increase or decrease as a result of folding,
although decreases are quantitatively more important. Continuing with
the same assumptions as above, if a c is the fault slip before the bend and
a d is the fault slip beyond the bend (fig. 6), then we may define a ratio
of slips R as

__ad _ slipbeyond bend
R==7 = slip before bend (13)
By the law of sines we have
~_ Isin(I180°—y)  Isinvy
T Tin(y=6)  sin(y—0) (14)
also
. Isiny (15)

~ sin (p+y—0)
Combining (13), (14), and (15) we obtain an expression for the slip ratio

__sin(y—9)
~ S (py-0) (19)

A graph of the ratio of slips R (eq 16) is given in figure 12. We first
note that if the fault is not cross cutting (6 = 0°), fault slip is preserved
across the fault bend. If the fault is cross cutting (6 # 0°) slip is increased
in synclinal folding (R > 1) and decreased in anticlinal folding (R < 1).
Note in figure 12 that decreases in slip are generally more substantial than
increases in slip. Increases in slip are generally on the order of 10 to 20
percent or less (R = 1.1 to 1.2) for typical synclinal fault-bend folds,
whereas decreases may reach 40 percent (R = 0.6) for first-mode simple-
step anticlines and 60 percent (R == 0.4) for many second-mode simple-step
anticlines. Therefore slip is not preserved across fault bends in thrust
sheets that cross cut bedding. Fault slip is consumed or produced by fold-
ing within the thrust sheets.

Theory of multiple fault bends.—Many faults, especially thrust faults,
have sufficiently large slip that the beds may have slipped past more than
one bend in the fault. We now consider what effect the sequence of fault
bends has on the final shape of the beds (y, 8). If the sequence of fault
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bends is labeled ¢, ¢, . . . ¢, then the net bend in the fault ® between
i=1andi=nis

o= z b; . (17
i=1

For a sequence of bends, B, of a previous bend is 6,4, for the next bend
(fig. 13); therefore from eqs (8) and (17) we have

B1= 01— 1 + (180° — 2y,) =6,

B2 = [01 — ¢, + (180° —2y,)] — ¢, + (180° — 2y,) ,
and

n
Bu=0,—®+ > (180°—2y,) (18)
i=1
The change in dip of the beds across the i-th fold vy; is
&; == (180° — 2v,) . (19)

Thus the net change in dip A is the last term of eq (18)
n n
A:Z (180° — 2y,) = 281-, (20)
i=1 i=1

Bi=0,—D+A. 1)

The net change in dip of beds, A, is obviously a function of the se-
quence of fault bends because it depends on the choice of mode of folding
(k=1 or 2) at each fault bend. Furthermore, even if we confine ourselves
to a single mode, for example first mode, the final cutoff angle 8, and the
net change in dip A both depend on the sequence of fault bends because
they are not linearly related to 6 and ¢ (eqs 7 and 8):

Bu(Puk) i=1->mnk=1or2
A(pi k) i=1->nk=1or2

and eq (18) becomes

The dependence of final cutoff angle on the sequence of fault bends
is illustrated with two examples in figure 13, which also illustrate the
effects of convex and concave ramps along thrust faults. In example 1 a
net fault bend & = 30° with an initial cutoff of 30° is accomplished in
one case (1A) with a single 30° bend (® = ¢, = 6, = 30°) producing a
final cutoff 8 = A = 60°, whereas in the other case (1B) the same net bend
is accomplished by a series of three 10° bends (¢, = ¢, = ¢, = 10°) pro-
ducing a different final cutoff 8, = A = 49°. In example 2 a net fault
bend ® = 15° with an initial cutoff of 15° is accomplished in one case
(2A) with a single 15° anticlinal bend (® = ¢, = 6, = 15°) producing a
final cutoff 8 = A = 16°, whereas in the other case (2B) the 15° net bend
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Fig. 13. Two illustrations of the dependence of final cutoff angle B, on the sequence
of fault bends (¢, ¢2» . . . ¢a) given the same net fault bend & and initial cutoft

angle 6,.
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is accomplished by first a synclinal bend ¢, = —15° and then an anti-
clinal bend ¢, = +30° producing a final cutoff 8, = 21°. These examples
have no associated scale. In actual structures the fault-bend folds typically
do not propagate a long distance into the overlying fault block if the dis-
tance between the bends is very small relative to the thickness of the
fault block, instead the folds are dissipated in disharmonic, non-parallel
behavior.

It should be noted that if we can measure the final cutoff angle @8,
and the net change in dip A, which may be possible in practical problems,
we can calculate (§, — @) using eq (21)

,Bn (d)z‘? kl) = 01 - ¢+ A(¢f’ l{f) (22)

because initial cutoff angle #, and net fault bend ® are independent of
the sequence of bends or mode numbers.

Shearing of fault-bend folds—Our theoretical development of the
previous sections included the important constraint that the beds only
undergo shear as they pass through a fault-bend fold; in particular the
beds on the right side of the fold in figure 5 undergo no shear until they
pass through the axial surface. We now relax this constraint to consider
two important ways in which zones of layer-parallel shear within a thrust
sheet or other fault block can deform parallel fault-bend folds: (1) shear-
ing-out of flat fold crests and (2) general layer-parallel shear in parallel
fault-bend folding.

1. Shearing out of flat fold cresis: The ideal theoretical shape of a
simple-step fold is shown in figure 3; however Suppe and Namson (1979)
pointed out that several folds of western Taiwan exhibit an important
deviation from this ideal shape. These modified structures exhibit a
squeezing out of the flat crest of the ideal structure, as is shown in
figure 14.

The squeezing out of the flat crest of the anticline is accomplished by
simple shear within the thrust sheet. This shear is possible within the
confines of the present theory when the line of the hanging-wall cutoff Y’
is in contact with the line of the footwall cutoff X (figs. 3 and 14). Only
at this stage in the deformation are axial surfaces 4 and B’ in contact
along X-Y’ and able progressively to annihilate each other to form a new
axial surface (AB’)* by the mechanism shown in figure 14. The annihila-
tion involves locking of the primary fault surface and slip in turn along
progressively higher bedding surfaces, resulting in a layer-parallel shear
of the thrust sheet above the lower decollement in the hanging wall. The
active slip surface is always the bed in contact with the branch in axial
surface (fig. 14). All slip is absorbed in the annihilation, therefore the
thrust sheet is immobile along the upper decollement, beyond the anti-
clinal axial surface (AB’)*.

Applying the geometry of annihilation of the flat crest of a simple-
step fold as shown in figure 15A we obtain an expression for the shorten-
ing or displacement d associated with annihilation along any given bed

d=c+b—a (23)
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Fig. 14. Kinematics of annihilation of a flat fold crest.
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Fig. 15. Geometric elements for computing the shear associated with squeezing out of flat
fold crests.
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Applying the law of sines we obtain
d:a[ﬁn'ﬁ-l—mnt‘)_l:l @24)
sin 2 y*
where y* = (180° — 8 — ¢)/2 is the axial angle of the new axial surface

(4B")*. The width a of the annihilated flat top of the anticline is a func-
tion of stratigraphic height k above the lower decollement

a=h [coty + cot (90° — 6/2)] (25)

Combining eqs (24) and (25) we obtain the expression for the simple shear
§* = d/h associated with the annihilation of the flat top of a simple-step
fold (figs. 14 and 15A).

sin B+ sin 0

S*:d/h:[cot’y—l—cot(90°—9/2)][ 2
sin2y

_1] (26)

A more general form of the equation, not confined to simple-step folds
(fig. 15B), is

S§* = d/lh = [cot y + cot (90° — §/2)] [Si“(ﬁf‘b;{’): sing :| @27)
Sin ')/

The angular shear a* is
o* = cot—1§* (28)

The angular shear a* for all simple-step folds is shown in figure 16.
For first-mode simple steps of less than 20° (¢ = ) the shear is negligible
(less than 2°). The shear increases to 17.2° for a step of 30° = ¢ = 6§ and
-becomes progressively larger for second mode folds of smaller axial angle
v. Therefore substantial distortion of the hangingwall sheet is associated
with annihilation. The distortion of faults farther back in the hanging
wall sheet is, however, less severe because the faults will generally be at
an angle to bedding of less than 30°. The dip of faults of the same angle
(6 = ¢) as the simple step is subject to a maximum flattening of 6.94° at
0 = ¢ = 23.5° (second mode). The flattening of faults in the hanging-wall
sheet is less than 2° for most first-mode folds (6§ = ¢ < 27°) and therefore
needs only be considered in second-mode simple-step folding.

The shearing of a simple-step fault-bend fold with associated an-
nihilation of axial surfaces, as shown in figure 24, is not inevitable. For
example, the Pine Mountain thrust sheet (fig. 2) has not undergone this
shear. Nevertheless, the shearing appears to be a widespread process (for
example, Suppe, 1980b; Suppe and Namson, 1979), particularly in multi-
ple imbrication structures (fig. 24), and may be a mechanism by which
thrust sheets become locked. The shallow thrust in figure 11 is in locked
position, for example. We recall that during annihilation, the primary
fault is locked (fig. 14). If the stresses are high enough to release the fault,
then the structure will be released from its associated ramp; at present
we know no natural structures of this type. Apparently their formation is
inhibited by resistance to the bending associated with axial surfaces that
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must form during their release. The propagation of a new fault or im-
brication may require a lower stress. Locked thrust sheets with annihilated
axial surfaces similar to figures 11 and 14 appear to be widespread.

2. General layer-parallel shear in parallel fault-bend folding: 1f we
relax the constraint of no layer-parallel shear of the beds prior to passing
through an axial surface, then a variety of new fold shapes is possible, of
the sort shown in figure 17.

The old constraint of no layer-parallel shear was expressed as the
requirement

be=bd (29)

in figure 6. We now allow layer-parallel shear of the sort shown in figure
17. The requirements for parallel folding then become y, =y, and

be=bd+absinytan« (30)

where « is the angle of simple shear (fig. 17). The fault-bend fold equa-
tions may now be rederived including the last term in eq (30). In particu-
lar eq (7) becomes

¢ = tan—1 [ [sind siny tana —sin(y—6)) [sin(2y—6) —sinf] ],
cos(y—8) [sin(2y—0) —sing] — siny
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Fig. 16. Angular shcar for squeezing out of flat fold crests in simple-step folds.
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Eq (31) admits a wide variety of fold shapes that were impossible un-
der the previous constraint of not allowing an arbitrary imposed shear o
(fig. 17). Nevertheless our experience with actual structures whose shapes
are well documented suggests that the imposed shear « is generally zero,
but we know some exceptions to be discussed elsewhere. They involve re-
activation of preexisting normal faults in thrust motion similar to the
geometry of figure 17. Therefore they represent an exception to the rule
that the highest cutolf angle § = ¢ for a simple-step parallel fault-bend
fold is 30°.

Shear associated with branching axial surfaces.—Branching of axial

surfaces is a widespread phenomenon in fold-and-thrust belts because of
locking and shearing of thrust sheets as discussed above and because of
interference of kink bands of nearby fault-bend folds. We have seen that
branching of an axial surface is associated with a change in layer-parallel
simple shear, as shown in figures 14 and 15. This property may be useful
in predicting subsurface geology, because, in passing through a series of
anticlines and synclines, shear may be conserved in a way somewhat anal-
ogous to conservation of bed length. If so, then branching in the anti-
clines, which is easily observed, must be balanced by equivalent branches
of opposite effect in the synclines. The important point to note is that
the opposite branches must occur at the same stratigraphic horizon in
order to conserve layer-parallel shear. The elements of the theory are
outlined below.

Any change in dip causes a shearing of the beds. If the unsheared
state is horizontal, then the layer-parallel simple shear S is a simple func-
tion of dip angle 8. The geometry of the problem is shown in figure 18.
By the Law of Sines

a _[a/sin(8/2)]

sin(a—8/2)  sin(90—a)

Shear

N

50°

Fig. 17. An example of general layer-parallel simple shear in combination with
fault-bend folding.
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Rearranging we get
S =tan g =2tan §/2 (32)
Thus, by knowing the dip we may immediately compute the shear.
Eq (82) is also the expression for the shear (change in shear) associ-

ated with the change in dip across an axial surface. We can add the shears
associated with axial surfaces i = 1, 2, . . . n along a single layer

n
zsi =S, +S: +...5, =2[tan §,/2 + tan §,/2 + . .. tan §,,/2]
i=1
(33)

There is a change in shear across a node (fig. 19) associated with the merg-
ing or splitting of axial surfaces

AS, =S8, +8,—S,=2[tan,/2 + tan §,/2 — tan 8,,/2]  (34)

28 can be defined for any layer and is constant for any stratigraphic in-
terval that contains no nodes. From eqs (33) and (34) we then have for
stratigraphic intervals X, ¥, and Z

58, =38, + SAS,, = S5, + 3AS, . (35)

90 -«
90 +6/2

Fig. 18. Geometric elements used to determine the angular layer-parallel simple
shear ¢ associated with a change in dip 8 (eq 32).
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Therefore we can say that between pinning points of no shear or constant
shear, the sum of the changes in shear along any bed containing nodes
(nodel surface) is zero

SAS=0 (36)

This fact reduces the problem of balancing a cross section across a “blind”
syncline to the problem of balancing changes in shear along each nodal
surface. The nodal surfaces can be discovered in the anticlines, and the
amount of shear measured from the dips (eq 34). Changes in shear of the
same magnitude but opposite sign must exist along the same bed in the
intervening synclines.

IMBRICATE FAULT-BEND FOLDING

General experience in fold-and-thrust belts suggests that most fault-
bend fold structures involve multiple imbrications. Even the type example
of the Pine Mountain thrust sheet involves two imbrications (fig. 2).
Therefore any useful geometric theory of fault-bend folding must be
capable of dealing with imbrications in a straightforward fashion. In this
section we consider imbricate fault-bend folding in which all imbrications
are of the same vergence.

In general, to solve for an imbricated fault-bend fold structure such
as figure 2, we need to know, or be able to compute, the undeformed cut-

i

Fig. 19. Notation for changes in layer-parallel simple shear associated with branching
axial surfaces. The change in shear AS associated with a branch is the difference in sums
of shears, for example ASy = (S, + S5 — S).
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off angles ¢p; = 6; for each of the imbrications. During deformation, these
cutoff angles may change because of shear associated with folding of the
thrust sheets and annihilation of axial surfaces. Nevertheless, if we know
the undeformed cutoff angles, here called the fundamental-cutoff angles,
°#0,, °0., . .. °6,, we can solve all the angular relations of an imbricate
structure as outlined below.

With each successive imbrication there is a quantum increase in for-
ward and back dip. Therefore within an imbricate fault-bend fold, panels
of rock bounded by axial surfaces may be classified according to the num-
ber of underlying imbrications (fig. 20). We will label the number of im-
brications associated with a panel of rock using numerals 0, I, II, III . . .,
with 0 indicating a panel of regional dip. To calculate quantum jumps
in back dip and forward dip associated with successive imbrications we
derive trigonometric relationships between the cutoff angles of imbrica-
tions (°6,) and the dips of rock panels in the fault-bend folds.

Back dips associated with imbrication—An imbrication of funda-
mental-cutoff angle °6, = & produces a shear S, of angle « in the overlying
thrust sheet as shown in figure 18 (eq 32)

S, =2tan (°9,/2) = tan « (32)

If the overlying thrust sheet contains a crosscutting fault of fundamental-
cutoff angle °#, prior to imbrication by fault 1, then considering the
geometry shown in figure 21A, the new cutoff angle ¢', is

@, =tan—? l: ! :l 37
I/tan °§, + 2 tan (°6,/2)

Similarly a third imbrication will have a crosscutting fault of new angle

0’3

¢, = tan—! [ , 1 ] (38)
I/tan °@, + 2 tan [°0, + 6",) /2]

Fig. 20. Panels of forward and back dip in a simple-step fault-bend fold with two
imbrications of § = ¢ = 18° (modfied from Suppe, 1980b).
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and the nth imbrication will have a crosscutting fault of new angle ¢,

P ! 1 o

1/tan °9, + 2 tan [°0, + &> + ... 0'n_1) /2]
Therefore if we know the fundamental cutoff angles °6,, °8,, . . . °6, we
can calculate the back dips associated with each of the n imbrications.
This is done for °9, = °0, = °0, in table 1.

Forward dips associated with imbrication—The key to computing
the forward dip angle associated with imbrication is certain angular
equivalences illustrated in figure 21B. The B-angle of a first or earlier
imbrication (B8,, 8,, ¢,) is the f-angle when it is refolded by a second or
later imbrication, for example

B1= 0., (40)

h .

— = tan *¢

3 tan *9,

d

—_ =2t o

" an (°01/2)
= 0;

d+b tan 62

Fig. 21. Angular relationships used in computing the back dips (A) and foreward
dips (B) caused by thrust imbrication.
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where the subscript 12 indicates the first imbrication folded by the second.
Furthermore the B-angle of a second or later imbrication is the fault bend
for the folding of a first or earlier imbrication, for example

B:= b (41)
The angle of forward dip associated with each of n imbrications may be
computed using similar angular relations to those in eqs (40) and (41) and
the basic fault-bend fold equations (fig. 7), given the fundamental-cutoft
angles °0,, °0,, . . . °0, associated with each of n simple-step imbrications.
This is done for ©9, = °6. = ... °0. in table 1.

NONLAYER-PARALLEL SLIP

‘ /
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Constant-angle imbrications.—In order to calculate the forward and
back dips associated with multiple imbrications we must know the funda-
mental-cutoff angle °0 for each fault. This procedure is not practical in
solving most problems of subsurface geology, unless we have extensive
drilling or excellent seismic-reflection profiling. In these problems we
generally know the dips in certain regions and wish to solve for the funda-
mental-cutoff angles, number of imbrications associated with each dip
panel (fig. 20), and ultimately the complete spatial arrangement of faults

/ NONLAYER-PARALLEL SLIP

NONLAYER-PARALLEL SLIP

L

Fig. 22. Non-parallel folding caused by imbricate fault-bend folding with a high
fundamental cutoff angle (§ = 30°).
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and folds at depth. In many cases we do not have sufficient information
to solve the general inverse problem, but the problem may be considerably
simplified and made soluble if we are willing to assume that each fault
has the same fundamental-cutoff angle °. This assumption may be me-
chanically reasonable in that the orientation of stresses relative to bedding
may not change greatly between successive imbrications. Furthermore,
applications suggest that some imbricate structures obey the constant-angle
approximation rather closely.

The angular relations for forward dips are simplified by the constant-
angle assumption. Egs (40) and (41) for example, reduce to

Bi=B:=0.=¢i; (42)

therefore the refolding of an earlier imbrication by a later imbrication
has the geometry of a simple-step in decollement (§ = ¢) and is described
by eq (12). The forward and back dips for constant fundamental cutoff
angle up to seven imbrications are calculated using eqgs (12), (39), and
(42) and are presented in table 1.

It should be noted that the folding of an imbrication always involves
a fault bend that is larger than the fundamental fault bend, because 8 is
always larger than § = ¢ for anticlines (fig. 7).

B>0=4¢ for anticlines, (43)
and from eq (42) for constant-angle imbrications we have
0,=¢, <0, =¢.<...0,= - (44)

For imbrications at larger fundamental cutoff angles, refolding may be
impossible with conservation of layer thickness because, as we see in figure
7, simple steps of = ¢ greater than 30° cannot conserve layer thickness.
Therefore, if two faults imbricate at ¢, = 0, = 30°, as shown in figure 22,
the refolding is impossible without change in layer thickness because (3,
= ¢, = 6, = 60°. The maximum fundamental cutoff angle is ¢ = 6 =
23.79° for two imbrications conserving layer thickness. The maximum
angle is about 20° for three imbrications, 18° for four imbrications, 16°
for five imbrications, 15° for six imbrications, and 14° for seven imbrica-
tions (table 1). This result emphasizes the importance of observing layer
thickness around imbricate fault-bend folds. If layer thickness is conserved
then either the fundamental cutolff angle is less than about 20 degrees or
some parts of the thrust sheets have undergone additional shear of the
sort shown in figure 17.

It is important to realize that the surface shape of an anticline pro-
duced by two or more imbrications depends greatly on the amount of
slip on each imbrication and on the spacing of the imbrications. A con-
siderable variety of fold shapes can be produced by the mechanism of
imbricate fault-bend folding. For example the imbricate structures in
figures 23B, C, and D all have exactly the same fault slip and differ only
in the distance between the two thrusts. In particular, compare examples
B and C with example D; in B and C there is a steepening of forward dips
by folding of the first imbrication whereas there is a flattening of forward
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dips in example D. We note that in D none of the dip angles differs from
a single fault step. Only the short flat segment within the forward dips
gives any real hint of imbricate structure at depth. Further slip on the
faults of D will, however, produce the steeper dips characteristic of two
imbrications.

When there are three or more imbrications substantially more com-
plex geometric relationships exist between surface structure and under-
lying faults; in these cases stacked anticlines will occur. The complexity

Fig. 23. Illustration of the effect of change in fault spacing on fold shape. Both im-
brications have identical slip and cutoff angle. (after Suppe, 1980b).
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of the problem of predicting subsurface structure is considerably reduced
if we consider the angular relationships between the panels of forward
and back dip before we attempt to solve the spatial aspects such as the
locations of faults and folds at depth. We call the analysis of angular
relations among dip data, dip-spectral analysis. This topic is treated in the
following section.

Dip-spectral analysis of imbricate structures—The quantum increase
in forward and back dip of each successive imbrication is not a constant
for a given fundamental-cutoff angle °6. The quantum change in forward
dip becomes larger with each additional imbrication because g8 is always
greater than 6 (eq 43). In contrast the quantum change in back dip de-
creases with each additional imbrication because of shear within the thrust
sheets (eqs 32 and 39). Therefore a distinctive and unique spectrum of
forward and back dips is associated with each fundamental cutoff angle.
For example three imbrications of °¢ = 16° will produce forward dips of
17°, 37°, and 59° and back dips of 16°, 31°, and 44°, whereas imbrications
of °0 = 14° will produce forward dips of 15°, 31°, and 49° and back dips
of 14°, 27°, and 39°. Note that the forward-dip spectrum is a particularly
sensitive indicator of fundamental cutoft angle. If dip data are available
from surface mapping, seismic data, or dipmeter surveys, the observed
and theoretical spectra can be compared. If the observed structure closely
approximates the constant-angle assumption then we can estimate both
the fundamental-cutoff angle and number of imbrications associated with
each panel of forward and back dips.

The initial steps in producing structural interpretations are (1) as-
sembly of data on a depth section, (2) dip-spectral analysis and assignment
of regions of the cross section to the model dips predicted by the dip-
spectral analysis, (8) construction of axial surfaces by bisecting the folds
(y1 = 7=). At this stage in the analysis any missing information may be
noted and assumed or obtained by new measurements.

The next steps in producing structural solutions are substantially
more difficult, because they involve guessing a solution and attempting
to draw it. This step involves experience and intuition and is an integral
part of all methods of subsurface structural interpretation. Nevertheless,
it is in a sense more demanding using the present theory because bad
guesses are quickly shown to be geometrically impossible. Two examples
are given below, based on outcrop and well data from the Appalachians
and Taiwan.

Pine Mountain Thrust (fig. 2)—The completed cross section of the
Pine Mountain Thrust in the southern Appalachians was already pre-
sented in figure 2. We now outline how the structural interpretation was
produced. The basic data include detailed surface mapping (England and .
others, 1961; Harris, 1962) and a well. Dip analysis suggests a fundamental
cutoff angle of °§ = 15° with an essentially flat regional dip, in agreement
with mapping to the west and nearby seismic data of Tegland (1978). The
regions of the cross section were assigned to model forward and back dips
based on the dip-spectral analysis. The inclinations of the axial surfaces
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are computed using the equal axial angle relationship (y, = 7). The posi-
tions of some axial surfaces are much better located than others. These
positions are adjusted by trial-and-error constrained by stratigraphic thick-
ness and conservation of bed length. The Brooks well encountered the
Pine Mountain Thrust below the Cambrian Rome Formation and entered
flat-lying Silurian in the footwall. This footwall is elevated relative to the
normal formation depths based on drilling and mapping to the west of
the section; the normal depth of the Pine Mountain Thrust along the
Silurian-Devonian decollement is shown on the left side of figure 2.

Next we must guess a qualitative structural solution. We choose a
two imbrication structure based on the minimum of two imbrications
deduced from the dip analysis. We choose a solution similar to the theo-
retical cross section in figure 20. The primary piece of information we do
not directly have is the undeformed depth of the Rome décollement; we
have two constraints: (1) the stratigraphic thicknesses observed and (2)
the positions of axial surfaces. The axial surface east of the Wallen Valley
thrust is particularly important, because, as seen in the theoretical cross
section (fig. 20), it is the axial surface produced by the footwall cutoff of
the Rome Formation along the Pine Mountain Thrust (see fig. 2). The
cross section may now be constructed along the lines of figure 20. After
some adjustment of positions of axial surfaces by trial and error we arrive
at the final solution shown in figure 2.

Nanliao Anticline (fig. 24)—We now consider a much more complex
and less well constrained cross section, the Nanliao anticline in western
Taiwan (Suppe, 1980b). The basic constraints are the stratigraphic thick-
nesses, positions of axial surfaces, and surface and well dips. Based on the
dip analysis we choose a fundamental-cutoft angle of 18° with a minimum
of four imbrications. 'The regional dip of 6° is known from seismic and
well data to the west. The next step in the interpretation was assignment
of model dips and provisional location of axial surfaces. The only ob-
served fault is the outcropping Chukou thrust which rides on a decolle-
ment in the upper plate. The deeper and higher decollement horizons
used in the solution are approximately in positions of decollement in
nearby structures. The final solution was then obtained by trial and error
using the same methods as the Pine Mountain Thrust.

The proposed solution is obviously not well constrained in light of
the uncertain positions of the decollement horizons and the large number
of required imbrications. Nevertheless, it provides considerable insight
into the structures that may be encountered in further exploration. In
particular, the possible existence of structurally stacked reservoirs in the
Nanliao anticline is identified by this analysis.
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