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Abstract Previous approaches used to determine the rates of different earthquakes
on a fault have made assumptions regarding segmentation, have been difficult to
document and reproduce, and have lacked the ability to satisfy all available data
constraints. We present a relatively objective and reproducible inverse methodology
for determining the rate of different ruptures on a fault or fault system. The data used
in the inversion include slip rate, event rate, and other constraints such as an optional a
priori magnitude–frequency distribution. We demonstrate our methodology by solv-
ing for the long-term rate of ruptures on the southern San Andreas fault. Our results
imply that a Gutenberg–Richter distribution is consistent with the data available for
this fault; however, more work is needed to test the robustness of this assertion. More
importantly, the methodology is extensible to an entire fault system (thereby including
multifault ruptures) and can be used to quantify the relative benefits of collecting
additional paleoseismic data at different sites.

Introduction

Probabilistic seismic hazard assessment requires the
availability of models that give the long-term rate of
different earthquake ruptures for each seismic source. Some
of the most sophisticated models for fault-based sources have
been developed by the recent Working Groups on California
Earthquake Probabilities (WGCEP; 1988, 1990, 1995, 2003,
and 2008). Although each of these studies represented
state-of-the-art approaches, their fault-based models exhibit
some shortcomings that may be important in terms of
seismic-hazard implications. For example, the two most re-
cent WGCEPs (2003 and 2008) both took the following
general approach in developing models for the most well-
characterized faults:

1. Assume segmentation—that is, divide the faults into a
small number of large segments (e.g., four for the
∼470 km northern San Andreas fault, based on previous
earthquakes and fault complexity), and assume that earth-
quake ruptures involve all of one or more segments
(never just part of any segment).

2. Convene an expert panel to examine paleoseismic and
other data to come up with an estimate of the relative
frequency (WGCEP, 2003) or absolute rate (WGCEP,
2008) of each single and multisegment rupture.

3. Adjust the models developed in step (2) by whatever
minimal amount is necessary to make them moment
balanced (consistent with fault slip-rate estimates).

The first problem with this approach is that segmenta-
tion may be incorrect (i.e., ruptures might actually begin and

end at more than just a few locations along the fault), and, if
so, this admittedly convenient approximation may be mis-
leading in terms of the implied seismic hazard. The second
problem is that deliberations by an expert panel are both
somewhat subjective and difficult to document, leading to
results that are often difficult to reproduce. The final problem
is that available paleoseismic recurrence-interval estimates,
which are matched explicitly in step (2), may no longer be
matched after the moment balancing of step (3). With respect
to segmentation, both WGCEP (2003) and WGCEP (2008)
also included some form of an unsegmented model, but these
did not generally match both the paleoseismic and slip-rate
data either.

This paper presents a relatively objective and reproduc-
ible methodology that avoids assuming segmentation and is
able to match both paleoseismic recurrence-interval data and
slip-rate data simultaneously. While we use the southern
San Andreas fault (SSAF) to exemplify the methodology,
an important attribute is that it is extensible to a potentially
complex network of faults; in this sense our work builds on
that of Andrews and Schwerer (2000). This extensibility will
allow the inclusion of multifault ruptures, the need for which
was emphasized by WGCEP (2008). This methodology can
also be used to quantify whether collecting additional paleo-
seismic data at a site might be useful or even to optimize the
location of new sites. While this study shares some simila-
rities to the so-called “stringing pearls” approach of Biasi and
Weldon (2009), their study was aimed at determining the
actual rupture history of the SSAF over the last 2000 years,
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whereas we are interested in determining the long-term,
average rate of events on the fault.

The General Solution

Our goal is to solve for the long-term rate of every pos-
sible earthquake rupture (above some threshold magnitude)
on the fault or fault system. For simplicity, we restrict our
attention here to earthquakes that rupture the entire seismo-
genic thickness of the fault (i.e., the entire down-dip width).
Our first step is to divide the fault(s) into some large number
(S) of subsections, as exemplified in the bottom image of
Figure 1, and to define the total number of possible ruptures
(R) as the entire set of contiguous subsection combinations.
Again, our goal is to solve for the long-term rate of each of
these possible ruptures by satisfying slip-rate and event-rate
data, and perhaps other constraints, which we do by setting
up a system of equations that can be solved using standard
inverse theory.

Our first set of equations involves satisfying fault slip-
rate estimates: XR

r�1

Dsrfr � vs; (1)

where vs is the average long-term slip rate of the sth subsec-
tion, Dsr is the average slip in the rth rupture on the sth sub-
section (specified a priori as exemplified subsequently in this
paper), and fr is the rate or frequency of the rth rupture (to be
solved for). This gives S equations for the R unknowns (as-
suming a slip-rate estimate is available for all subsections).

Our second set of equations involves satisfying any
paleoseismically derived estimates of average event rates
(the reciprocal of the mean recurrence interval) at points
along the fault:

XR
r�1

GsrP
paleo
r fr � fpaleos ; (2)

where Gsr is a matrix indicating whether the rth rupture
involves the sth subsection (1 if so, 0 if not), Ppaleo

r is the
probability that the rth rupture would be seen in a paleoseis-
mic trench (exemplified later in this paper), and fpaleos is
the paleoseismically inferred event-rate estimate for that
subsection.

The third set of equations applies to any a priori rupture
rate estimates that might be available (e.g., the rate of
Parkfield earthquakes should equal the historical rate of 1
approximately every 25 years; Bakun et al., 2005):

Figure 1. (a) Fault sectioning and segmentation of WGCEP (2008) and (b) the subsectioning applied in this paper. The numbers below
some of the subsections in (b) correspond to the indexes used in subsequent figures, and the stars indicate locations where paleoseismic
event-rate constraints exist (Table 4).
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fr � fa priori
r : (3)

Alternatively, we may want to stipulate that the total rate
of events on some subsection be equal to an a priori estimate
(e.g., that the total rate of all events involving a given Park-
field subsection equal the historical value of 1 approximately
every 25 years), as in our fourth equation set:

XR
r�1

Gsrfr � fa priori
s : (4)

In order to further condition the inversion, we can add a
smoothness constraint to the fifth equation set that stipulates
the rate of earthquakes of a given size should not vary along
the fault (unless the data described previously demand other-
wise):

fr � fr�1 � 0; (5)

which we apply to all ruptures that are adjacent, maximally
overlapping along the fault, and involving the same number
of subsections (see the Example Ruptures in Fig. 1). The jus-
tification for this constraint might be physical (e.g., nature
does not generally exhibit changes in the rate of similar-sized
events along a fault) or practical (e.g., we do not want earth-
quake insurance premiums to reflect such rate variations un-
less data demand otherwise).

The final equation set involves constraining the entire
set of earthquake rates to be consistent with some a priori
magnitude–frequency distribution:

XR
r�1

Mrfr � fa priori
m�Δm ; (6)

where fa priori
m�Δm is the total rate of earthquakes in the range

m�Δm and Mr is a vector that states whether or not the
rth rupture has a magnitude that is in this range. By spanning
a range of discrete magnitudes, one can impose an entire
magnitude–frequency distribution (although if one wants
to solve for the best fitting parameters of a specific distribu-
tion, such as a Gutenberg–Richter distribution (Ishimoto and
Iida, 1939; Gutenberg and Richter, 1944), it must be done
iteratively as exemplified subsequently in our paper).

The preceding set of equations can easily be solved in
the least-squares sense using standard linear inverse theory
(e.g., Menke, 1989). Specifically, if we combine all available
equations into one system as:

Xf � d;

where f is a vector of rupture rates that we wish to solve for
and d is a vector of data constraints, then the least-squares
solution is simply that which minimizes the total squared
prediction error (defined as the sum of the squares of the
differences between the observed and predicted data):

E �
X
i

�dobsi � dprei �2 � �d � Xf �T�d � Xf �;

where i corresponds to the ith subsection or rupture (depend-
ing on the type of constraint). If we have uncertainty
estimates for the data (σdi ), then we can solve for the
weighted least-squares solution by minimizing

E �
X
i

��dobsi � dprei �
σdi

�
2

� �d � Xf �TW�d � Xf �; (7)

where W is a diagonal matrix of weights (1=σ2
di
). This

weighted least-squares solution assumes the relative data
uncertainties are adequately approximated by known uncor-
related Gaussian distributions.

Because earthquake rates cannot be negative, an impor-
tant additional constraint is positivity:

fr ≥ 0:

While this is helpful in terms of further narrowing the solu-
tion space, it makes finding and understanding the inverse
solution more difficult (e.g., singular value decomposition
cannot be used). We use the nonnegative least-squares
(NNLS) solution of Lawson and Hanson (1974). The
weighted inversion is obtained by multiplying both sides
of each equation by 1=σi before solving the NNLS problem.
Note that the positivity constraint on fr, and vs and f

paleo
s for

that matter, is an explicit violation of the presumed Gaussian
statistics; we proceed nonetheless.

There may be a desire to force a better fit with respect to
any one of the equation sets described thus far in this paper
(or to give the various sets relative preferences). This can be
accomplished by simply multiplying both sides of the equa-
tions for a given set by a relative weight. This allows the so-
lution to be fine-tuned in order to balance the various
constraints (which admittedly adds a degree of subjectivity,
but at least these choices are easily documented and results
are therefore reproducible).

Finally, to prevent the inversion from setting too many
rupture rates to zero (as is exemplified subsequently here), it
may be desirable to force final rates to be greater than some
specified minimum values �fr ≥ fmin

r �. Putting these values
into a vector fmin, we achieve this constraint by defining

f 0 � f � fmin

and

d0 � d � Xfmin;

solving

Xf 0 � d0

for f 0 using NNLS, and then obtaining the final solution as

f � f 0 � fmin:
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Application to the Southern San Andreas Fault

Here we exemplify the methodology using the southern
San Andreas fault. It is important to note that, although we
believe the SSAF models presented here are at least as defen-
sible as anything else published, a more thorough exploration
of parameter sensitivity and propagation of epistemic uncer-
tainties is warranted before making any formal conclusions
or recommendations. The point here is to exemplify our
relatively objective and reproducible methodology.

This implementation has been accomplished using
code available from OpenSHA (Field et al., 2003; see
the Data and Resources section). Table 1 lists and describes
the parameters that are adjustable in our implemen-
tation, which are subsequently discussed in the context
of the solutions presented here. Each of these parameters
represents an epistemic uncertainty, and again, it is beyond
the scope of this paper to fully explore the influence of
each (let alone the influence of other possible parameteri-
zations).

Table 1
Parameters Used in OpenSHA Inversion Implementation for the Southern San Andreas Fault

Parameter Name
Preferred
Value Allowed Values Description

maxSubsectionLength 7 (km) 1–25 (km) Sets the maximum length of fault subsections, where the actual
subsection length is determined by dividing the entire section
length by the smallest whole number that produces subsection
lengths less than or equal to the value specified by this parameter.

numSegForSmallestRups 2 1 or 2 The minimum number of subsections involved in any rupture.
deformationModel D2.1 D2.1, D2.2, or D2.3 Specifies which of three southern San Andreas fault slip-rate models

to use. See WGCEP (2008) for details.
moRateReduction 0.1 0–1 Specifies the amount of the subsection slip rates that is accounted for

by earthquakes smaller than the full down-dip ruptures considered
here; see WGCEP (2008) for more discussion.

transitionAseisAtEnds Yes Yes or No Determines whether subsection aseismicity values are linearly
transitioned in the sections at the ends of the fault (Parkfield and
Coachella).

transitionSlipRateAtEnds Yes Yes or No Determines whether subsection slip rates are linearly transitioned in
the sections at the ends of the fault (Parkfield and Coachella), in
order to transition into the creeping sections.

slipRateSmoothing 5 Positive whole number If greater than 1, this applies a boxcar smoothing to all the subsection
slip rates, where the value given here is the width of the boxcar in
terms of the number of subsections. For example, if slipRate
Smoothing, the slip rate of a given subsection is the average of
itself and its two neighbors on each side.

slipModelType Tapered Ends WGCEP-2002,
Uniform/Boxcar, or

Tapered Ends

Specifies how the average slip varies among the subsections involved
in a given rupture. Uniform/Boxcar means the slip in all
subsections is the same. The WGCEP-2002 option means the slip
in each subsection is proportional to the subsection slip rate. The
Tapered Ends option means slip rate decreases toward the ends of
the rupture, following the sin�x�0:5 function. See WGCEP (2008)
for more details.

magAreaRel Hanks & Bakun
(2008)

Ellsworth-A,
Ellsworth-B,

Hanks & Bakun (2008),
or Somerville (2006)

This specifies the magnitude–area relationship used to compute the
magnitude (and average slip) from the rupture area. Ellsworth-A
and Ellsworth-B are from equation (3.5a) and (3.5b), respectively,
of WGCEP (2003). The others are as referenced.

applyProbVisible Yes Yes or No When set to “yes,” the inversion accounts for the fact that not all
ruptures will be seen in a paleoseismic trench.

wtedInversion Yes Yes or No When set to “yes,” the data uncertainties are used in a weighted least-
squares inversion (via equation 7).

minRupRate 1 × 10�6 0 to ∞ This sets a minimum rate for all ruptures.
relativeSegRateWt 1 0 to ∞ This sets the weight of equation set 2 relative to equation set 1.
relative_aPrioriRupWt 100 0 to ∞ This sets the weight of equation set (3) relative to equation set (1).
relative_aPrioriSegRateWt 100 0 to ∞ This sets the weight of equation set (4) relative to equation set (1).
relative_smoothnessWt 10 0 to ∞ This sets the weight of equation set (5) relative to equation set (1).
relativeGR_constraintWt 0.0 0 to ∞ This sets the weight of equation set (6) relative to equation set (1).
grConstraintBvalue 1 �2 to 2 If relativeGR_constraintWt is not zero, this sets the b value of the

Gutenberg–Richter distribution.
grRateAtM6.5 0.011 0 to ∞ If relativeGR_constraintWt is not zero, this sets the Gutenberg–

Richter rate of events at the magnitude 6.5 bin (between 6.45 and
6.55).
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Adopting the parlance and data model of WGCEP
(2008), we start with a fault-section dataset for the SSAF,
which gives the following set of geometrical and kinematic
parameters for each fault section: (1) name, (2) fault trace,
(3) average dip, (4) average upper and lower seismogenic
depth, (5) average long-term slip rate, (6) average rake, and
(7) average aseismic slip factor (defined as the fraction of
moment released by creep between the upper and lower
seismogenic depths). Figure 1a and Table 2 contain the fault-
section dataset used here for the SSAF, which comes from
WGCEP (2008). The slip rates listed are for one of the three
deformation models developed by WGCEP (2008), as cho-
sen by the deformationModel parameter in Table 1.

Note that this fault sectioning is for descriptive purposes
only and does not necessarily imply any rupture segmenta-
tion. In fact, distinct fault sections were defined only where
one or more of the associated parameters changes signifi-
cantly along the fault, meaning the sections can be arbitrarily
long if the parameters do not change. Therefore, we need to
subdivide these sections into small enough lengths that
the model is effectively unsegmented. As with previous
WGCEPs, we restrict ourselves to solving for the rate of
earthquakes that rupture the entire seismogenic thickness
(∼14 km for the SSAF), so the smallest events we are con-
sidering are about 14 km × 14 km. To enable these ruptures
to occur anywhere along the fault (at some reasonable level
of discretization), we subdivide each fault section into sub-
sections that are about 7 km in length (half the average down-
dip width) using the maxSubsectionLength parameter in
Table 1. This leads to the 83 subsections listed in Table 2,
producing an effectively unsegmented model compared to
the 11 segments applied by WGCEP (2008).

We now define the set of possible ruptures as all those
involving two ormore contiguous subsections, where the low-
er limit of two is chosen (via the numSegForSmallestRups
parameter in Table 1) so the smallest ruptures have approxi-
mately square dimensions with respect to the seismogenic
thickness (and avoiding unrealistic aspect ratios where the
down-dip width would be about two times the rupture length).
Given that there are no branches in our fault model, the total
number of ruptures is 3,403 (two of these are shown as
Example Ruptures in Fig. 1). This level of discretization
represents a balance between our goal of relaxing segmenta-
tion (which argues for a greater number of shorter subsec-
tions) and the computational demands of the problem in
terms of memory and the central processing unit.

The mean magnitude for each earthquake rupture is
computed using a magnitude–area relationship (Table 1); in
our example solutions here, we use the relationship of Hanks
and Bakun (2008). Following WGCEP (2008), the aseismi-
city parameters are applied as a reduction of seismogenic
area in computing these magnitudes. For the fault sections
at the ends of the fault (at Parkfield and Coachella), we apply
a linear transition of aseismicity values over the subsections
while preserving the original, average value for the entire
section (via the transitionAseisAtEnds parameter in Table 1,

leading to the final values given in Table 2). This is done to
avoid abrupt changes in aseismicity along the fault, although
results are not heavily influenced by the application of this
modification. The mean magnitudes for each rupture are
rounded to the nearest tenth of a unit; and, following
WGCEP (2008), an aleatory variability over magnitude is
given for each rupture as listed in Table 3 (a Gaussian dis-
tribution with sigma � 0:12, truncated at �σ, and discre-
tized at 0.1 values).

To avoid producing a very high rate of smaller events at
the ends of the fault, we also linearly transition the slip rates
to zero over the Parkfield and Coachella subsections as they
approach the creeping sections to the north and south, re-
spectively (accomplished via the transitionSlipRateAtEnds
parameter in Table 1). Similarly, to avoid abrupt changes in
fault slip rates at the fault-section boundaries, which would
introduce artificial rupture segmentation, we also smooth the
subsection slip rates along the fault using a 5-point boxcar
function (via the slipRateSmoothing parameter in Table 1).
Both of these adjustments produce the modified slip rate
values listed in Table 2 (and shown in Fig. 1b). Following
WGCEP (2008), these slip rates are further reduced before
application in equation set (1) according to the value of
moRateReduction in Table 1 (which accounts for the fraction
of moment rate released by events smaller than the full seis-
mogenic ruptures modeled here).

Solving equation set (1) requires specifying the slip on a
given subsection for a given rupture (Dsr). First, the average
slip for each rupture is computed from magnitude, area, and
an assumed shear rigidity of 3 × 101 Nm using the standard
moment-magnitude relationship (Hanks and Kanamori,
1979). This average slip is then partitioned over the subsec-
tions according to which type of slip model is chosen (via the
slipModelType parameter described in Table 1). Following
WGCEP (2008), which comes from Weldon et al. (2008),
we use the tapered ends model for the examples here, where
slip gets lower toward the ends of the rupture.

The SSAF paleoseismic event-rate data available for use
in equation set (2) are listed in Table 4 (from Parsons, 2007)
and shown with stars in Figure 1. For Ppaleo

r in equation
set (2), which gives the probability that a rupture will be seen
in a paleoseismic trench, we use equation (4) of Youngs et al.
(2003), which originally comes fromWells and Coppersmith
(1993):

Ppaleo
r � eM×2:053�12:51

1� eM×2:053�12:51 ;

where M is the magnitude of the rupture. This produces
probabilities of 0.45, 0.87, and 0.98 for magnitudes 6, 7,
and 8, respectively.

The only a priori rate constraints applied in equation
sets (3) and (4) are to control the behavior of Parkfield earth-
quakes (otherwise the rate of this event is too low, and the
rate of smaller events in this fault section are too high). We
first attempted to simply set the rate of Parkfield earthquakes
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to be the historically observed value of 0.04 (once every
∼25 years; Bakun et al., 2005). However, doing so led
the total rate of one Parkfield subsection to be too high
(an event every ∼13 years) due to the influence of other rup-
tures that involve this subsection. Alternatively, we tried
using equation set (4) to make the total rate of each Parkfield
subsection equal to 0.04, but this led to the Parkfield rupture
itself being too rare. As a compromise, in the results pre-
sented here, we ended up applying this constraint to both
the Parkfield rupture and to each of the Parkfield subsections.
Again, the point here is not to defend these specific decisions
but rather to exemplify how such issues can be addressed in
our framework.

The minRupRate parameter in Table 1 forces the rate of
all ruptures to be greater than or equal to this value as de-
scribed in The General Solution section. Several other param-
eters in Table 1 govern how the various equations in the
inversion are weighted. The wtedInversion parameter simply
tells whether to apply the slip-rate and event-rate uncertainties
(listed in Tables 2 and 4, respectively) in a weighted-inversion
minimization of equation (7). The relativeSegRateWt,
relative_aPrioriRupWt, relative_aPrioriSegRateWt, and
relative_smoothnessWt give the weights for equation sets (2),
(3), (4), and (5), respectively, all of which are relative to equa-
tion set (1). As previously stated, application of these weights
simply involvesmultiplying both sides of the equationswithin

each set by the associated value before performing the inver-
sion. The smoothness constraint represented by equation
set (5) is applied here to ruptures that are both adjacent (in
terms of index) and involve the same number of subsections.

Finally, the relativeGR_constraintWt parameter in
Table 1 specifies the extent to which the solution is forced
to conform to a Gutenberg–Richter distribution via equation
set (6), where we use Δm � 0:05 (bin widths of 0.1 magni-
tude units). The aleatory variability is ignored in assigning
each rupture to a magnitude bin (only the mean magnitude
is considered). The b value of this distribution is set by
the grConstraintBvalue parameter, and the grRateAtM6.5
parameter is used to set the rate of events in the magnitude
6.5 bin (which establishes the a value, from which the rate of
events in all other bins in equation set (6) can be computed
using the Gutenberg–Richter relationship). The value of this
latter parameter is found iteratively by searching for that
which minimizes the total prediction error.

Results

Results for the inversion using the preferred values in
Table 1 are shown in Figure 2. Figure 2a shows the fit to
slip-rate data, Figure 2b shows the fit to paleoseismic
event-rate data, Figure 2c shows the total magnitude-fre-
quency distribution for the solution, and Figure 2d plots
the spatial distribution of all ruptures that have a final rate
greater than the minRupRate value in Table 1. We quantify
the goodness of fit to the slip-rate data with the following
normalized slip-rate residual:

����������������������������������������X��vobsi � vprei �
σvi

�
2

s
:

For the results in Figure 2a, this residual is 0.11, and the
equivalent event-rate residual for results in Figure 2b is
0.34. The Parkfield earthquake, which has a mean magnitude
of 5.9, has a final predicted recurrence interval of 37 years,
with the lowest interval for any one of its subsections being

Table 3
Distribution of Magnitudes Assigned

to Each Rupture*

Magnitude Probability

mean� 0:2 0.09
mean� 0:1 0.24
mean 0.34
mean� 0:1 0.24
mean� 0:2 0.09

*The means are given by the chosen magnitude–area
relationship. The probabilities are taken from a Gaussian
distribution with sigma � 0:12, truncated at �2σ and
discretized at 0.1 values.

Table 4
Paleoseismic Data for the Southern San Andreas Fault

Site Latitude (°) Longitude (°) Subsection Index* Average Rate†
Rate Sigma

(Standard Deviation) 2.5% Percentile‡ 97.5% Percentile‡

Bidart 35.2328 �119:7872 16 0.005882 0.003529 0.001282 0.020000
Combined Carrizo 35.1540 �119:7000 18 0.003571 0.001924 0.001235 0.008333
Pallett Creek 34.4556 �117:8870 47 0.007353 0.002495 0.003534 0.013514
Wrightwood 34.3697 �117:6680 50 0.010204 0.005476 0.005714 0.016667
Pitman Canyon 34.2544 �117:4340 54 0.004545 0.002679 0.002273 0.012500
Plunge Creek 34.1158 �117:1370 59 0.002083 0.004005 0.000676 0.012500
Burro Flats 33.9730 �116:8170 64 0.002381 0.002494 0.002174 0.011111
1000 Palms 33.8200 �116:3010 72 0.002941 0.002108 0.001075 0.010000
Indio 33.7414 �116:1870 74 0.003125 0.002328 0.000855 0.011111

*The Subsection Index gives the corresponding subsection from Table 2.
†Average event rate = one over the mean recurrence interval, assuming the southern San Andreas fault exhibits a Poisson distribution of interevent times

(see Appendix C of WGCEP (2008) or Parsons (2007) for details).
‡The 2.5 and 97.5 percentiles represent the 95-percent confidence bounds.
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20 years and the average over all six subsections being
24 years. The value of 100 applied for the relative_aPrior-
iRupWt and relative_aPrioriSegRateWt parameters in Table 1
were found to adequately balance the tradeoff between the

Parkfield event and subsection rates (see the Application
to the Southern San Andreas Fault section).

We originally set the minRupRate parameter to zero, but
the inversion ended up giving a nonzero rate to only 148 out

Figure 2. Inversion results. (a) The fit to slip-rate data: thick black line, mean slip rate for each subsection; thinner black lines, 95%
confidence bounds; black dots, final model slip rates for the solution based on the preferred parameter values in Table 1. Subsection indices
increase from Parkfield at the north to Coachella at the south. (b) The fit to paleoseismic event-rate data: thick black line, final model event rates
at each subsection for the solution based on the preferred parameter values in Table 1; black dots,mean event-rate constraints and corresponding
95% confidence bounds from Table 4. The thick black line includes the probability that each event is paleoseismically observable (the Ppaleo

r

term in equation set 2), whereas the thinner gray line gives the total rate for comparison. (c) The total magnitude-frequency distribution for the
solution: thicker black and gray lines, the model-predicted incremental and cumulativemagnitude-frequency distributions, respectively, for the
solution based on the preferred parameter values from Table 1. The thinner lines show results for a pure Gutenberg–Richter distribution for
comparison, where theavaluewas chosen tomatch themodel-predicted cumulative rate atmagnitude 6.5, and the uppermagnitudewas chosen
tomatch the overall moment-rate of themodel. The black and gray dashed lines are the incremental and cumulative distributions fromWGCEP
(2008), averaged over all logic-tree branches. (d) Rate and spatial distribution of each rupture that has a rate greater than minRupRate, for the
solution based on preferred parameter values in Table 1. The x axis gives the index of the subsection, with Parkfield to the left and Coachella to
the right. Dashed lines give the locations where the paleoseismic event-rate constraints exist.
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of the 3403 possible ruptures (with all other parameters set as
in Table 1). To avoid saying any rupture cannot happen, we
gradually increased the value of the minRupRate parameter
until it just started influencing the slip-rate and event-rate
residuals. This modification forces every event to have a non-
zero rate, but only 138 out of the 3403 ruptures have rates
greater than the minimum value (shown in Fig. 2d). For the
smoothness constraints of equation set (5), we increased the
value of the relative_smoothnessWt parameter until it, too,
just began influencing the slip-rate and event-rate residuals.

Note that, for the results in Figure 2, no Gutenberg–
Richter constraint was applied. The resultant magnitude–

frequency distribution (Fig. 2c) implies slightly elevated rates
at the largest magnitudes, relative to a Gutenberg–Richter,
consistent with a more characteristic magnitude–frequency
distribution (e.g., Wesnousky et al., 1983; Schwartz and
Coppersmith, 1984; Stirling et al., 1996). This solution does
not, however, have as elevated a rate of large earthquakes as
the original characteristic earthquake hypothesis, which (as
originally formulated) postulated rates of large earthquakes
an order of magnitude higher than would be predicted by a
Gutenberg–Richter extrapolation from small magnitudes.
Figure 3 shows an equivalent set of results wherein a
Gutenberg–Richter distribution with a b value of 1.0 has been

Figure 3. (a–d). Same as Figure 2a–d except that a Gutenberg–Richter constraint has been applied as described in the text
(relativeGR_constraintWt � 1 × 106, grConstraintBvalue � 1:0, and grRateAtM6:5 � 0:011).
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enforced via equation set (6) (by setting relativeGR_
constraintWt � 1 × 106 and grConstraintBvalue � 1:0).
This constraint was applied between magnitudes 6.2 and 8.2,
and the value of the grRateAtM6.5 parameter was found via a
grid search that minimized the total prediction error. The slip-
rate and event-rate residuals for this case are 0.12 and 0.43,
respectively, so only the latter is slightly greater than for
the unconstrained case in Figure 2 (where values are
0.11 and 0.34, respectively). Therefore, it appears that both
a somewhat characteristic distribution and a Gutenberg–
Richter distribution are viable for the SSAF.

Interestingly, applying a Gutenberg–Richter constraint
with a b value of 0.0 (a uniform distribution), as applied
by WGCEP (2008) for their unsegmented model option,
produces slip-rate and event-rate residuals of 1.4 and 0.93,
respectively. Thus, it appears that a b value of 0.0 is not
consistent with the slip-rate and event-rate data. Figure 2c also
includes the magnitude–frequency distribution obtained by
theWGCEP (2008) for the SSAF (averaged over all logic-tree
branches), which is appreciably different from the results
obtained here.

Discussion

Our intent here has been to introduce and exemplify
a relatively objective and reproducible methodology for
determining the long-term rate of events on a fault or fault
system. There are several aspects of the example presented
here that are tempting to present and discuss, including the
magnitude–frequency distributions at points along the fault,
the total rate at which subsection boundaries constitute
endpoints of ruptures (getting to the question of fault seg-
mentation), and the degree that each rupture contributes to
the slip rate along the fault. Perhaps most provocatively,
our results contribute to a growing body of evidence that
a Gutenberg–Richter distribution might apply to the San
Andreas fault (e.g., Jackson and Kagan, 2006; Page et al.,
2009; Parsons and Geist, 2009). As shown in Figure 2c,
our results are certainly different from the average
magnitude–frequency distribution assigned to the SSAF by
WGCEP (2008).

However, as stated at the outset of this paper, several
items need to be examined further before drawing strong
conclusions. One is the nature of the solution space for a
given set of parameter values (like for the results shown
in Fig. 2), especially because the vast majority of ruptures
have final rates that are equal to the minimum value. We
believe our problem is over determined, or at least mixed
determined, especially given the smoothness constraint of
equation set (5). The solution should therefore be well con-
strained or unique. However, the question remains as to the
range of results represented by other solutions that, while not
the best fit, nevertheless have an acceptable fit. As the reader
can verify from Figure 1a,b, the NNLS solution overfits the
data (i.e., the residuals are much smaller than the data errors).
Because the NNLS algorithm does not allow us to explore

alternative models for a given set of parameters, we plan to
explore use of a simulated annealing algorithm (Kirkpatrick
et al., 1983) or other approaches in the future. Simulated
annealing can generate multiple solutions to this nonlinear
inverse problem, thus allowing us to probe the solution space
of the model. This will be very important for identifying
alternative models for a given set of parameters, which would
represent epistemic uncertainties that could be used to popu-
late a logic tree. This will also allow us address the tendency
for NNLS solutions to force most values to be zero or the
minimum allowed.

A second issue that needs to be explored before drawing
strong conclusions is the sensitivity of results given reason-
able alternative values for the parameters in Table 1 (also
representing epistemic uncertainties). The difference be-
tween the inversion solutions with and without the G-R con-
straint demonstrates that alternative solutions could be quite
different with regard to individual rupture rates (see Fig. 2d
and Fig. 3d). Which parameters have the strongest effect and
what properties of the solution are stable with respect to the
inversion parameters are important subjects of future work.

A third question is the effect of our implementation of
the slip-rate constraint, which is applied to every subsection.
An alternative implementation would apply these constraints
only at those points where the original slip-rate data were
measured (perhaps with a smoothness constraint forcing final
slip rates to change gradually along the fault, at least where
there are no expected changes due to fault branching). Our
application of the slip-rate constraint to every subsection,
with an unmodified uncertainty estimate, probably gives this
data too much weight in the inversion. Because our solutions
fit the slip-rate and paleoseismic event-rate data fairly well, a
fourth question deals with the range of models that would be
obtained by sampling these data via Monte Carlo methods
from the original probability distributions (rather than using
mean values).

Other issues that warrant resolution before drawing de-
finitive conclusions include: whether down-dip width is
really constant over the magnitudes we have considered
(e.g., King andWesnousky, 2007); the validity of the Poisson
assumption made in determining the paleoseismic recurrence
intervals used here (Table 4 and Parsons, 2007); and the in-
fluence of more recent SSAF data that have been collected
but not yet compiled in a usable form. A final issue is that
we have ignored any ruptures that involve neighboring faults
(e.g., ruptures that jump from the SSAF onto the San Jacinto
or Cucamonga faults or ruptures that extend beyond the ends
of the SSAF).

The fault-jumping issue brings us to reiterate the fact
that our methodology is extensible to an entire fault system,
such as the network of known California faults. As such, this
represents an extension of the approach outlined by Andrews
and Schwerer (2000) but where we have relaxed segmenta-
tion assumptions and have added equation sets (2)–(5).
Applying our methodology to a fault system raises the ques-
tion of how to account for the fact that multifault rupture
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probabilities will depend on the separation between faults.
However, even defining a binary distribution (e.g., allowing
faults closer than 5 km to rupture together as if they
were contiguous and not allowing faults at a greater distance
to rupture together) would be better than the present
approach of excluding multifault ruptures entirely (e.g.,
WGCEP, 2008).

Applying our methodology to an entire fault system will
raise even greater issues with respect to solution uniqueness,
especially because most faults have little or no paleoseismic
event-rate constraints. One intriguing approach to addressing
this problem is to use the rate ofmicroseismicity near a fault to
constrain the rate at which large events nucleate on the fault
in that vicinity (by extrapolating an assumed magnitude–
frequency distribution). Of course this inverse problem will
become quite large, and it remains to be seen whether
computational resources are available for solving it.

One constraint we have seemingly excluded here is the
paleoseismically inferred estimates of slip in previous events.
We have done so because these data are relatively sparse, the
length of ruptures they are associated with are usually un-
known, and the degree to which they represent the average
slip for the event has considerable uncertainty. Most impor-
tantly, however, in many cases these data have already been
used to help determine the slip rates we are using, so they are
not independent constraints. It will be important that future
studies consider the use of all such data more carefully.

Finally, the methodology presented here can be used to
quantify the potential benefits of future paleoseismic studies,
either by adding fictitious constraints in equation set (2) in
order to test the potential impact or via a more sophisticated
site optimization aimed at addressing specific questions
(such as whether a fault is more characteristic or Gutenberg–
Richter). Web-based applications could be deployed for this
purpose if there is demand from the community.

Data and Resources

All data used in this paper came from published sources
listed in the references. The OpenSHA code (Field et al.,
2003) is available from www.OpenSHA.org. Some plots
were made using the Generic Mapping Tools version
3.4.5 (www.soest.hawaii.edu/gmt).
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