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Materials and Methods 
 
Hillslope Model 
 
The evolution of a one-dimensional hillslope follows: 
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such that surface elevation ζ changes through time t where U is surface uplift rate [L T-1], 
ρ* is the density ratio between bedrock and dry soil, E is erosion rate [L T-1], x is distance 
along the hillslope and qs is volumetric sediment flux per unit width [L2 T-1] (dimensions 
of [L]ength, [M]ass and [T]ime denoted with square brackets). Sediment flux in steep, 
soil mantled landscapes can be modeled using (10, 11): 
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where D is a transport coefficient [L2 T-1], S is hillslope gradient [L L-1] and SC [L L-1] is 
a critical hillslope gradient toward which sediment flux becomes infinite. This system can 
be nondimensionalized (as denoted by an asterisk superscript) (7): 
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Substituting Equation 2 into 1 and using these nondimensionalizing definitions leads to 
the following solution for hillslope form: 
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which we use to model the evolution of a 1D hillslope through time. 
 
Topographic Analysis 
 
Roering, et al. (7) provide steady state solutions (i.e. when the condition U=E is satisfied) 
for the above model which allow derivation of non-dimensional erosion rate E* which is 
proportional to E (Equation 3c). The solutions also predict E* based on quantifiable 
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hillslope topographic metrics, namely hilltop curvature CHT [L-1], hillslope length LH [L] 
and mean hillslope gradient S [L/L]: 
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Dimensionless relief can be derived theoretically as a function of E* and predicted from 
topography using S: 
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We use Equations 5b and 6b to quantify E* and R* from topographic data, selecting SC = 
0.8 so that the requirement R* < 1 is met. Varying SC does not change the overall 
distribution of E* vs. R* data derivbed from topography but will alter their absolute 
values. These metrics are expected to deviate from their steady-state predictions when a 
hillslope is undergoing a transient response to base-level change. Following Hurst, et al. 
(2) we located hilltops as the adjoining margins of drainage basins extracted at a range of 
stream orders. In DBPR we restricted our analysis to interfluves trending roughly 
perpendicular to SAF, so that the hilltops are likely to be experiencing similar erosion 
rates on both sides of the divide (Fig. 1a). Using a 0.25m digital elevation model, we 
calculated the aspect, gradient and curvature (Laplacian) of elevation from the 
coefficients of a 6-term quadratic surface fitted by least squares to all cells within a 2.5m 
window centered on the cell of interest.  CHT was sampled directly at hilltops then an 
aspect-driven, steepest descent trace was run from each hilltop pixel until a mask defining 
the channel network/valley fill was encountered. From this trace LH and S were calculated 
(see Fig. S1). 
 
DEM Preparation 
 
There were two principal concerns when preparing a DEM for this analysis. Firstly, the 
raw LiDAR point cloud contained returns misclassified as ground originating from small 
shrubs bushes (Fig S2 and Fig S3). These were identified and preferentially smoothed. 
Secondly, hilltops on the Dragon’s Back Pressure Ridge get extremely narrow (<2 m) 
where denudation is rapid, and so calculating reliable values for CHT required analysis to 
check for scale dependency (Fig. S4).  
 
We interpolated raw point cloud LiDAR returns (point density ~4 m-2) to a 0.25 m2 
resolution grid using MCC-LiDAR (13). This algorithm identifies locations in the point 
cloud where returns coincide spatially and removes the highest of these points. We do not 
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use MCC-LiDAR to identify shrub vegetation since the algorithm is dependent on 
curvature, and hence has a tendency to misidentify sharp hilltops as vegetation. To 
remove bushes and shrubs, the gridded data was smoothed using a non-local means 
filtering algorithm (14). Filtering is based on the assumption of regularity; that in the 
neighbourhood of the pixel of interest there are neighbourhoods that should look similar 
and therefore these non-local neighbourhoods can be used to predict the value at the 
original pixel. A non-local approach to DEM smoothing is particularly appealing towards 
the goal of removing bushes/shrubs which can be considered positive, high frequency 
noise since unlike many filtering techniques it does not assume the noise is normally 
distributed, therefore we minimize smoothing of hilltops. Fig. S2 shows an example of 
the effect of the smoothing. 

 
We justify interpolation to a 0.25 m2 grid resolution by arguing that this allows the true 
location and elevations of point cloud data to be better spatially resolved in the gridded 
approximation of the surface. This fine resolution allows us to calculate curvature over 
smaller windows, which is essential for resolving the curvature of narrow hilltops. 
Typically topographic curvature is calculated over scales greater than the characteristic 
wavelength of high-frequency noise associated with surface roughness, for example due 
to pit-mound topography generated by tree throw (15). At DBPR positive surface noise 
associated to low relief vegetation was smoothed. Given that hilltops are narrow, we 
calculated curvature over much smaller spatial scales. We varied the scale from 0.75 m to 
5 m to test for scale effects. In Fig. S4 we show four hilltops distributed along the length 
of DBPR, and the associated variation in CHT and its standard deviation as the scale over 
which curvature was calculated varied. The selected hilltops are distributed along the 
length of DBPR, chosen to reflect the various stages in landform development. We 
observe that CHT varies little with length scales above ~2.5m, except on the sharpest 
hilltops (Fig. S2(b)) and there is a significant reduction in the standard deviation at this 
scale. At this scale we see through high frequency noise in the landscape. The hilltop in 
Fig. S2(b) is extremely narrow and therefore with increasing length scale we are 
underestimating CHT. This is an important limitation to our results since it alters the range 
of E* in Fig. 2, compressing the data at high E* and may be the cause of clustering. It is 
therefore possible that any relationship between E and CHT becomes artificially non-linear 
at high E. 

 
Uplift/Base-level Model 

 
The hillslope model presented in Equation S4 was forward modeled through time, 
assuming that D = 0.0086 m2 a-1 (12) and LH = 30 m (Fig. 1), which allowed us to 
calculate R* and E* at each simulated non-dimensional model time (Equation S3d). We 
favored fixing LH rather than developing a more complex 2D landscape evolution model 
to avoid having to model complex valley forming processes, particularly transitions from 
detachment to transport limited conditions and the initiation of debris-flow processes.  
Time-dependent dimensionless uplift U* was idealized as a Gaussian function with 
duration tstd

* peaking at time tmax
* and maximum uplift Umax

* treated as model parameters: 
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Posterior probability densities for U* and tstd
* were then sampled using a Markov-Chain 

Monte Carlo (MCMC) method according to the misfit between measured values of R* 
and E* and those calculated at corresponding t* values in the forward model (16) using a 
maximum likelihood estimator: 
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where n is the number of data points, u could be either E* or R* as a function of time 
(determined using a space for time substitution based on a fault slip rate of 33 mm yr-1) 
(8), the superscripts meas and mod denote measured and modeled quantities, respectively, 
and σu  is the standard deviation of E* or R* data. Values of the peak uplift and width of 
the Gaussian uplift curve were changed after each iteration of the MCMC ‘chain’ and 
then accepted or rejected using an acceptance criterion (see below). For each iteration, 
the two parameter values were changed from the last accepted parameter value, and this 
deviation was selected from a Gaussian probability distribution bounded by minimum 
and maximum parameter values. Following standard practice, the standard deviation of 
the Gaussian distribution of each parameter (peak uplift and uplift field width) is set so 
that the acceptance rate of each iteration is c. 33 % (17). This process is iterated upon 
several thousand times in order to constrain the posterior distribution of the model 
coefficients (18). The acceptance criterion is based on the Metropolis-Hastings algorithm 
(19). The likelihood of the current iteration is compared to the previous iteration. If the 
ratio likelihood of the new iteration to the previous iteration is > 1, then the new 
coefficient values are accepted. If this ratio is < 1, then the new coefficients are accepted 
with a probability equal to the ratio. To generate the posterior distribution of coefficient 
values, each iteration in the Markov Chain is weighted by the likelihood of the 
combination of parameter values, creating a probability distribution of each coefficient. 
This can be used to determine both mean and 95% credibility limits on the parameter 
values. The resulting best fit uplift field can be seen in Fig. 3. 
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Fig. S1.  

One dimensional schematic cross section of a hillslope showing the metrics extracted 
from topographic data. Relief R is the difference in elevation between the divide and the 
base of the hillslope, and the horizontal distance between these elevations is the hillslope 
length LH. The ratio of these gives the mean hillslope gradient S. Hilltop curvature (∇ζ in 
2D space) is the second derivative of the surface measure only at the divide.  
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Fig. S2.  

Aerial imagary (courtesy of Bing Maps) centered north-west of the zone of high uplift. 
Note that the hillslopes in this portion of the DBPR are corrugated which is interpreted to 
be due to small landslides/debris flows. Dark speckles are patchy shrub and brush 
vegetation which required filtering in the topographic data. 
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Fig. S3:  

Example of smoothing by nonlocal means filtering algorithm which preferentially 
smoothes positive noise generated by the presence of local surface features such as 
bushes or boulders. Left image is topographic data gridded to 0.25m, right image is 
smoothed data using the nonlocal means techniques (17). 
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Fig. S4. 
Variation in the Hilltop Curvature as a function of the length scale (or window size) over 
which curvature is extracted from the DEM. For each hilltop depicted in black in the 
shaded relief image, we extract the mean and standard deviation of curvature with a range 
of window sizes. Columns (a)-(d) are for hilltops distributed along the length of DBPR 
recording (a) transient response to uplift/erosion, (b) high erosion rate, steep planar 
hillslopes and narrow ridges, (c)-(d) relaxation of hillslope after uplift has ceased. For (a), 
(c) and (d) mean hilltop curvature is independent of window sizes above 2.5m so this is 
the scale we use. On sharp hilltops with steep side slopes (b) negative hilltop curvature 
increases as the window size decreases suggesting we will underestimate CHT on such 
hilltops. 
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