Methods for Dating Quaternary Surficial Materials

by Janet M. Sowers, Jay Stratton Noller, and William R. Letts

<table>
<thead>
<tr>
<th>Type of Method</th>
<th>Type of Method</th>
<th>Method</th>
<th>Status</th>
<th>Resolution (±error)</th>
<th>Error and Reporting Standards</th>
<th>Comments</th>
<th>Basis of Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dendrochronology</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2. Vaneo chronology</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>3. Sclerochronology</td>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>4. Radiocarbon</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>5. 39Ca</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>6. K-Ar, Ar-Ar</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>7. U-series (238U-234U)</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>8. 26Al</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>9. 10Be, 26Li</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>10. Electron spin resonance</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>11. Luminescence</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>12. Amino acid racemization</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>13. Oxidation hydration</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>14. Obsidian hydration</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>15. Pedofeatures</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>16. Soil organic content</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>17. Rock magnetic properties</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>18. Scarp morphology</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>19. Paleomagnetism: Secular variation</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>20. Sedimentology</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>21. Paleontology: Evolution of microfossils</td>
<td></td>
<td>III</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>22. Marine geochronology</td>
<td></td>
<td>II</td>
<td></td>
<td></td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Please note: This chart summarizes the more well-known, easily-used, or most promising new methods. For a detailed, comprehensive treatment of Quaternary sedimentary materials, see 1999, in AGU Geoscience Monograph 77. AGU Reference Shelf, AGU Reference Shelf Vol. 4.
INDEX

A

Accelerator mass spectrometry, See AMS
Acid-base-acid wash procedures for samples, 57
See also specific methods
Accuracy, luminescence dating, 169t
Active faults
 definition, 480
 geodetic data, 480
 geological data, 481
 historical seismicity data, 480
 instrumental seismicity data, 481
 landforms produced, 482f
Active seismic source characterization
 detailed mapping, 484-485
 geomorphic analyses, 485
 paleoseismic methods, 484-486
 subsurface investigations, 486
Activity ratios 234U/238U and 238U/234U variation with time, 103f, 104f
Age calculation from 231Pa/230Th activity ratio, 102-103
Age of standards, 40Ar/39Ar dating, 81-82
Aggradation events with applications to paleoseismology, 461-462
Aggradation surface correlations within region, 459-460
Air correction for 40Ar, 79
1964 Alaska earthquake, sitka spruce damage, 19f
Alder Creek rhyolite, Cobb Mountain California, U-Pb concentrations 127f-128
Alpine moraines, surface exposure dating by cosmogenic nuclides, 71-73
Alternating field demagnetization, 345
Alvord Fault, Steens Mountain, paleoseismicity, 537-540
Alvord Hot Springs site, exploratory trench, 537-549
Amino acid racemization, 187-222
See also Aminostratigraphic dating
Chemical and biological dating methods
Aminostratigraphic dating
 confidence limits, 200-201
 cost of analysis, 214
 data analysis, 199-200
 future developments, 211-212
 geologic setting, 212-213
 interlaboratory comparisons, 201-202
interpretation and age estimates 202-207
 laboratory analysis, 195-199
 limitations, 212-215
 local calibration requirements, 213
 marine terraces, 205f-207
 methodology, 192-207
 racemization principles, 188-191
 sample collection, 192-193
 sample preparation, 195-196
 sample preservation, 195, 199
 seismic hazards assessment, 207-211
 sources of error, 214-215
 standards for data reporting, 201
 taxonomic factors in sampling, 194-195
 temperature dependence, 188-191
 thermal histories, samples, 193-194
 theory, 188-192
 time required for analysis, 214
 time range, 191-192, 212
See also Amino acid racemization
Chemical and biological dating methods
 Amphibians, Quaternary faunas in North America, 408
 Amphiboles, 88, 90
 AMS
 cosmogenic nuclide methods, 69-70
 radiocarbon age estimates in Black Canyon trench, 544f
 radiocarbon geochronology, 46, 48, 50-52f, 53-54
 rock varnish dating, 255-256
 See also mass spectrometry methods
Anhysteretic remanent magnetization, 347-348
Annual methods
See Sidereal dating methods
Anomalous fading in luminescence geochronology, 168
Apatite annealing behavior, 133-135
Apatite fission-track dating of late Cenozoic uplift, 503-506
Apparatus for thermoluminescence measurement, 164f
Application of geochronology in paleoseismology, 479-495
Applications
See Geologic settings specific methods
40Ar analysis, 78-79
40Ar/39Ar dating
 age spectra, 83
 39Ar recoil, 83-84
 basalt flows near Hat Creek fault, 513r-514
 data analysis, 92-93f, 95-96
 decay corrections, 83
 error propagation, 94-95
 evaluation surface-fault rupture risk, 509-515
 field collection, 88-89
 future developments, 96-97
 geologic settings, 85-89
 K-correction, 82-83
 laboratory analysis, 89-92
 methodology, 86-96
 nucleogenic interferences, 82-83
 plateau dates, 95
 sample preparation, 89-90
 single crystal dating, 84
 standards, 81r-82
 theory, 80-81
 time range, 86
See also Isotopic dating methods
K-Ar dating
39Ar recoil, 83-84
Archeological site, KER-140, southern California, cation-ratio dating, 253f
Archival sample responsibilities, 34-35, 54
Argon analysis
See 40Ar analysis
Argon-argon dating
See 40Ar/39Ar dating
Atlantic Coast, U.S. aminostratigraph 208-210
Atmospheric variation 14C content, 42-44f

B

Banks Island, Canada, tephra induced tracks, 132f
Basalt flows near Hat Creek fault, date by 40Ar/39Ar, 513r-514
Bear Divide, San Gabriel Mountains, California, fault rocks exposed, 555f
Birds, Quaternary faunas in North America, 408
Biochronology, North American microtine rodents
See North American land mammal ages

t = table; f = figure

569
North American microtine faunal regions
North American microtine rodents, biochronology
North American microtine rodent dispersal events
Biologic upper limit in Black Butte dacite, Mt. Shasta, California, biotites, K-Ar, 40Ar/39Ar dating, 87-88
Biological weathering, 295
Biological and chemical See Chemical and biological
Biological weathering, 295
Biotites, K-Ar, 40Ar/39Ar dating, 87-88
Bishop ash bed, Long Valley, California, Bonneville basin, shoreline correlations, 319f-322f
Bonneville basin, shoreline correlations, 473-474
Bonneville shoreline scarps, 319f-322f
Borah Peak, Idaho, earthquake, Lost River fault, antecedent scarps, 322, 324-325
Bulk density determination in fault studies, 281-282

C

14C [carbon-14]
activity in plants, 41
atmospheric content variation, 42-44
decay counting, 46, 52-53
half-life reevaluation, 43
production by weapons testing, 43
sampling data for Pitman Canyon site, 564f
See also Isotopic dating methods
Radiocarbon geochronology
Carbonates for U-series dating, 103-104, 180-109
Cation-ratio dating of rock varnish cation leaching curves, 251-253
cation leaching features, 257
limitations, 253-255, 257
methodology, 249-255
time, 248-249
time range, 249
Cellulose extraction, 57
cenozoic uplift, apatite fission-track dating, 503-506
Charcoal in radiocarbon dating, 40, 47, 49
Charwell River, New Zealand, influences of climatic and tectonic controls on streambed altitude, 458f
Chemical and biological dating methods 3f, 5, 7
See also Aminostratigraphic dating
Amino acid racemization
Lichenometry
Obsidian hydration
Rock-varnish chronometry
Chemical weathering of surface, 68, 295
China, cation-leaching curve from, 25ff
36Cl formation, cosmogenic reactions, 65f
See also Isotopic dating methods
Classification of methods, 2-4
Clast-sound velocity in determination of rock and mineral weathering, 298
Clay alteration and half-life of mica, 302-303
Clay film index in fault studies, 285
Clays and related materials, 88
Climate effect on weathering, 295, 297
Climate change, response time by fluvial aggradation, 460f-461
Closure temperatures, 79
Cobb Mountain, See Alder Creek rhyolite
Collecting track-length data in fission-track geochronology, 141
Colluvial wedges from recurrent surface faulting, 488f
Color index in fault studies, 285
Columbia Plateau, slackwater deposits as source for the Palouse loess, 465
Community confidence in results, 9
Concordance of electron spin resonance ages, 179
Conflicting faunal and amino acid data, 421
Confidence in results community, 8-9
diffusion-equation analysis, 325-329
electron-spin resonance, 182
eolian features correlation to global climate change, 468
fission-track ages, 145-146
K-Ar or 40Ar/39Ar, 93-94
lead-210 geochronology, 119
lacustrine landforms correction to global climate change, 475
paleomagnetic dating, 347-348
rock varnish method, 257
sclerochronology, 35-36
tephrochronology, 371
Coral skeletons, growth patterns, 26
Coralline for U-series dating, 104
Core drilling corals, 33
trees, 14
Correlated-age methods, general, 4-5
Correlating fluvial aggradation events to global climate change, 456-464
Correlating Quaternary deposits to global climate change, 425-426
Correlating Quaternary landforms to global climate change, 425-426
Correlation dating methods, 3f, 5, 8
See also Global climate change
North American microtine rodents, biochronology
Quaternary terrestrial and non-marine aquatic faunal groups of North America
Paleomagnetism
Tephrochronology
Correlation methods in Quaternary lacustrine stratigraphy, 474f-475
Coseismic uplift, dating by radiocarbon geochronology, 56
Coseismic vertical deformation, dating by sclerochronology, 25
Cosmic rays spatial distribution, 62-63
temporal distribution, 63-64
Cosmogenic nuclide methods in surficial materials accumulation rates, 64
alpine moraines, 71-72
applications, 71-73
chemical weathering, 68
36Cl formation, 65f
classification, 6-7
data analysis, 70-71
elevation changes, 68-69
erosion, 67-68
fault faces, 73
geolectric context, 74
geomagnetic field strength
variability, 64, 67
gyrometry change, 68
impact craters, 72-73
laboratory analysis, 69-70
limitations, 73-74
methodology, 69-71
nuclide production rates, 64-66f
paleoshorelines, 72
sample collection, 69
shielding, 68
spatial distribution of cosmic rays, 62-64
temporal distribution of cosmic rays, 63-64
time range, 69
volcanic surfaces, 72
See also Isotopic dating methods
name of method
Coso Range, Crater Flat, Nevada
cation-leaching curve, 25f, cation-leaching curve, 25f,
subvarnish organic matter by scanning electron microscopy, 256f,
Crater Lake, Oregon, Mazama ash bed, tephra layers, 358t-360
Cross-dating of samples in dendrochronology, 11-12
Crustose lichens, 262f
Cryogenic magnetometer, 344

D
D/L values, amino acids
See Amino acid racemization
Data analysis
aminostratigraphic dating, 199-200
40Ar/39Ar dating, 92-93f
cosmogenic nuclide methods, 70-71
dendrochronology, 15-16
diffusion-equation analysis, 316-325
electron-spin resonance, 182
fission track geochronology, 146-147
K-Ar dating, 92-93f, 95-96
lichenometry, 266-269
obsidian hydration dating, 232-234
marine invertebrate faunas, zoogeographic correlation, 418-419
paleomagnetic dating, 346-349
rock and mineral weathering, 307-308
sclerochronology, 35-36
soil geomorphology in fault studies, 282-285
tephrochronology, 371-373
uranium series methods, 110-112
Daughter deficiency methods, 101-114
Daughter excess methods, 101
Decay chain, 232Th-208Pb, 122
Decay chain, 238U-206Pb, 122
Decay corrections in 40Ar/39Ar dating, 83
Decay counting in radiocarbon geochronology, 46, 48, 52-53
Deformation patterns associated with normal fault surface rupture, 483f
Deformation patterns associated with reverse and thrust faults, 484f
Deglaciation of New England, 22
Demagnetization paths for samples in New Madrid Seismic Zone study, 560f
Dendrochronology
cross-dating of samples, 11-12
data analysis, 15-16
indicators of seismic disturbances, 12-13f
laboratory analysis, 14
limitations and maximum utility, 18-19
methodology, 14-16
sample collection, 14
seismically altered surfaces, 16-17
skeleton plots, 14
surface ruptures and disturbances, 18
time range, 13-14
See also Sidereal dating methods
Density-pattern images by x-ray, 34
Density separation in samples for radiocarbon dating, 50, 57
Depositional environments for reef-building corals, 29
Devil’s Hole 18Ocalcite record, 431-432
Diablo Canyon Power Plant, Long-Term Seismic Program, 527
Diagenic alteration of fossil protein materials, 188-190
Diagenic pathways of mineralized amino acids, 188f
Diffusion-equation analysis
age of scarplike landforms, 313-338
data analysis, 316-325
diffusivity estimates, 326, 327-329
field data collection, 315
Hirano’s equation, 329-330
homogeneous diffusion equation, 313
inverse solutions for age, 334
lunar craters, 332-334
nonlinear models, 334-335
scarplike landform, geometry, 314f
slope-offset analysis, 316-327
steady-state morphology arising from lateral erosion, 330-332
terrestrial cinder cones, 332-334
theory, 315-327
uncertainties, 325-329
Displaced surfaces correlations, soil geomorphology in fault studies, 287-288
Dose rate measurement, luminescence geochronology, 167-168

E
Earliest known rodents with microtine characteristics, 382-383
Earth material age, 5-6
Earthquake
1964 Alaska, sitka spruce damage, 19f
Conway segment, dated by lichenometry, 522-526
1739 Great Wall of China, fault scarps, 321-323
Hope fault, dated by lichenometry, 522-526
1989 Loma Prieta, fault geometry inferred from, 505f
Lost River fault, Borah Peak, Idaho, antecedent scarps, 322, 324-325
1812 San Andreas, tree-ring evidence, 549-552
Earthquake dating, 288, 518-519
Earthquake recurrence parameters, 519-520
Earthquakes, intervals between surface-rupturing, 491f
Earthquakes, sclerochronology as useful record, 29-30
Earth’s magnetic field, 339-342
El Nino Southern Oscillation events, sea-level changes, 29
Electron microprobe analysis in tephrochronology, 370
Electron-spin resonance dating fault rocks confidence assessment, 182
data analysis, 182
field collection, 181-182
future developments, 185
geo logic settings, 180
laboratory treatment, 181-183
limitations, 184-185
method, 181-185
paleoseismic applications, 182, 183
sample preservation, 182
INDEX

theory, 177-179

time range, 180-181

See also Radiogenic dating methods

Electron-spin resonance dating

movement on the San Gabriel fault, 553-556

Electron-spin resonance spectrometers, 178-179

Elevation changes, 68-69

Environmental factors in rock and mineral weathering, 294t

Environmental impacts in coral sample collection, 33

Eolian deposits and landform formation models, 465-468

Eolian features dating, by correlation to global climate change, 447-455

Eolian sand deposits as indicators of weathering, 294t

Epimerization of amino acids

See Amino acid racemization

Equivalent dose determination in luminescence geochronology, 163-167

Erosion of surface, 67-68

Error propagation in 40Ar/39Ar, K-A dating, 94-5

Espanola Basin, New Mexico, cation-leaching curve, 252f

ESR dating, See Electron-spin resonance dating

Evaluation surface-fault rupture risk to a penstock, 509-516

slip rate, 514

recurrence interval estimation, 514-515

Evidence of faulting

géomorphologic, 481-484

stratigraphic, 481

structural, 481

Exoskeleton of colonial coral materials, 31-32f

Exploratory trench, Alvord Hot Springs site, 537-549

External detector method in fission-track geochronology, 140-141

F

Fault activity assessment using geodetic data, 480

geological data, 481

historical seismicity data, 480

instrumental seismicity data, 481

Fault activity using stream terraces to evaluate, 485f

Fault faces surface exposure dating by cosmogenic nuclides, 72f-73

Fault geometry inferred from earthquake, 1989 Loma Prieta, 505f

Fault gouge by electron spin resonance, 177-186

Fault map, San Francisco Bay area, 504f

Fault rocks at Bear Divide, San Gabriel Mountains, ESR data, 555f

Fault rocks electron spin resonance dating, 177-186

Faulted and deformed strata, dating by radiocarbon geochronology, 56

Faulted terraces by obsidian hydration dating, 236

Faunal and amino acid data conflicts, 421

Feldspars and feldspathoids, K-Ar, 40Ar/39Ar dating, 87

Field collection

diffusion-equation analysis, 315

electron-spin resonance, 181-182

K-Ar, 40Ar/39Ar dating, 88-89

marine invertebrate faunas, zoogeographic correlation, 416-417

radiocarbon geochronology, 48

sclerochronology, coral, 33

Field methods for lichenometry, 264-266

Field methods for paleomagnetic dating, 342-343

Fish Canyon tuff, Colorado, spontaneous tracks in zircon grain, 132f

Fish Lake, Oregon, master curve of secular variation, 351-353

Fish Quaternary faunas in North America, 408

Fission track age calculation, 143-147

Fission track annealing, 133-135

Fission track geochronology

confidence assessment, 145-146

data analysis, 143-147

future applications, 151-152

geologic settings, 135

laboratory analysis, 138-143

limitations, 152

methodology, 137-147

Paleoecologic applications, 147-151

sample archival, 143

sample collection, 137-138

sample preparation, 138-141f

sample preservation, 138

time range, 137

See also Radiogenic dating methods

Fission-track sample sizes, 139f

Flame photometry, 78

Floating chronologies, 27

Fluvial aggradation events, correlation to times of global climate change, 447-455

Foliose lichens, 262

Foraminifera in racemization studies, 190-191

Fractured clasts in determination of rock and mineral weathering, 298

Fungus association measurement, See lichenometry

G

Galapagos, coral core microanalysis, chemical and isotopic records, 28f

Gas chromatography in aminostratigraphy, 196-200

Geologic settings

aminostratigraphic dating, 212-213

40Ar/39Ar, K-A dating, 85-89

dendrochronology, 12-13

electron-spin resonance, 180

fission-track geochronology, 135

lead-210 geochronology, 118-119

lichenometry, 263

luminescence geochronology, 161-162

marine invertebrate faunas, zoogeographic correlation, 416-417

paleomagnetic dating, 342

rock varnish chronometry, 246-247

U-series dating, 103-104

Geologic upper limit in sclerochronology, 30

Geomorphic excursions, 341-342

Geomorphic field strength variability, 67

Geometry change, 68

Geomorphic dating methods, 3f, 5, 7-8

See also Rock-varnish chronometry

Scarp-like landforms, age from diffusion analysis

Soil geomorphology in fault studies

Geomorphic evidence of faulting, 481-484

Glacial chronology by obsidian hydration dating, 235-236f

Glacial deposits

methods of dating, 451t

weathering at Sierra Nevada, California, 295f

Glacial end moraines as markers for regional climate system, 452

Glacial events, dating by correlation to global climate change, 447-455

Glacial varves, 21-23
INDEX 573

Glaciers and climate, 447-452
Global climate change
 correlating Quaternary deposits and
 landforms, 425-426
 correlation of fluvial aggradation
 events to, 456-464
 dating Eolian features by correlations
 with, 465-469
 dating glacial events and correlation
 to, 447-455
 glacier response, 449f
 in marine stable isotope records,
 427-433
lacustrine features, 470-478
See also Correlation dating methods
Global correlation of coastline features
 assumption of constant uplift rate,
 438
 relation diagrams for shore-parallel
 terrace sequences, 438-439
 unique altitudinal spacing of
 terraces with constant uplift
 rate, 439-440
See also Marine terraces dating with
 relative-age and correlated-age
 methods
Grain-size distribution in fault studies,
 279, 281
Graphite targets in AMS, 50-51f
Great Wall of China, fault scarps,
 earthquake of 1739, 321-323
Growth curves for 230Th and 231Pa
 nuclides, 102f
Growth rates for lichens, 264f, 266-268

Hammer ring in determination of rock and
 mineral weathering, 298
Hat Creek fault near the penstock,
 509-512f
Heartwood-sapwood boundary, 17
High pressure liquid chromatography in
 aminostratigraphy, 196-200
High vacuum extraction, 91
Hirano’s equation, 329-330
Holocene tidal marsh deposits,
 radiocarbon dating, 497-502
Homogeneous diffusion equation, 313
Honggouzigou site
See Great Wall of China
Hope fault earthquakes dated by
 lichenometry, 522-526
Huckleberry Ridge ash bed, Yellowstone,
 Wyoming, Idaho
tephra layers, 358f-360
 bubble-wall glass shards, 363f
Humboldt Bay nuclear power plant,
 California, paleoseismology
 applications of
tephrochronology, 373
Hydration rate factors in obsidian
 hydration dating, 224-228
Hydration thickness measurement in
 obsidian hydration dating, 229-232
Ice sheets, effects on ocean oxygen
 isotope ratio, 429f
Idaho, thermoluminescence dating of
 scarp-related deposits, Lemhi fault,
 541-548
Identification of lichens, 264
Impact craters, surface exposure dating by
 cosmogenic nuclides, 72
Initial 239Th problem, 105
Insects, Quaternary faunas in North
 America, 407
Instrumental nuclear activation in
 tephrochronology, 370
Integrated geomagnetic field strength
 calculation, 64
Intervals between surface-rupturing
 earthquakes, 491f
Ion-exchange high-pressure liquid
 chromatography in
 aminosynthesis, 196-199
Irradiation of samples, 90f
Isochron analysis in 40Ar/39Ar
 dating, 84f-85
Isochron approach in K-Ar dating, 79
Isotopic dating methods, total sample dissolution,
 105-108
Isochron methods, U-Pb and Th-Pb,
 124-125
Isodynamic separations, 90
Isoleucine epimerization in fossils, 189f
Isotopic dating methods, 3f, 5-7
See also
 40Ar/39Ar dating
 14C
 36Cl, cosmogenic reactions
 Cosmogenic nuclides methods
 K-Ar dating
 Lead-210 geochronology
 Radiocarbon geochronology
 Th-Pb geochronology in Quaternary
 rocks
 U-Pb geochronology in Quaternary
 rocks
 Uranium series

J-K
40K analysis, 78
K-Ar dating
 closure temperatures, 79
 data analysis, 92-93f, 95-96
 error propagation, 94-95
 field collection, 88-89
 future developments, 96-97
 geologic settings, 85-89
 laboratory analysis, 89-92
 methodology, 86-96
 sample preparation, 89-90
 theory, 77-85
 time range, 86
See also 40Ar/39Ar dating
Isotopic dating methods
Kaikoura Penninsula, New Zealand,
 inferred uplift vs. terrace age, 441f
Kylen Lake, Minnesota, master curve of
 secular variation, 351, 353

L
Laboratory analysis
 aminostratigraphic dating, 195-199
 40Ar/39Ar dating, 89-92
 cosmogenic methods, 69-71
 dendrochronology, 14
 electron spin resonance, 182-183f
 fission-track geochronology, 138-143
 K-Ar dating, 89-92
 lead-210 geochronology, 117-118
 luminescence geochronology, 163-170
 marine invertebrate faunas,
 zoogeographic correlation,
 416-417
 obsidian hydration dating, 228-229
 paleomagnetic dating, 343-346
 radiocarbon geochronology, 48-54
 rock varnish chronometry, 250
 soil morphology in fault studies,
 279-285
 tephrochronology, 369-370
 uranum series methods, 109-110
Lacustrine features, 472t
Lacustrine features and global climate change
- confidence in correlation, 475-476
- creation of special features, 470-471
- field recognition of features, 473-475
- paleoseismic applications, 476
- process response, 470
- timing of features, 471
Lahontan shoreline scarps, observed and model profiles, 321-322f
Lahontan, slop-offset representations, shoreline scarps, 319f-320
Lake Bonneville, Utah, chronology, Lahontan shoreline scarps, 320
Lake St. Croix, Minnesota, master curve
Lahontan shoreline scarps, observed and model profiles, 321-322f
Lake St. Croix, Minnesota, master curve
Lava creek B ash bed, Yellowstone, Wyoming, Idaho, tephra layers, 358f-360
Lava flow samples, 89, 104-105
Layer date refinement, 517-518
Lava flow samples, 89, 104-105
Layer date refinement, 517-518
Lead-210 geochronology
- confidence assessment, 119
- geologic settings, 117-119
- laboratory analysis, 117-118
- limitations, 119
- paleoseismic applications, 118-119
- theory of method, 115-117
See also Isotopic dating methods
210Pb analysis
Lemhi fault, thermoluminescence dating of scarps-related deposits, 541-548
Lichen size-frequency graphs, 267f
Lichen size measurements, 265-266
Lichen taxa, 263-264
Lichenometry
- data analysis, 266-269
- dating and locating prehistorical earthquakes, 521-526
- dating curves, 266-267
- field methods, 264-266
- geologic settings, 263
- growth curves, 268
- growth rates, 264f, 266-268
- identification, 264
- lichen taxa, 263-264
- limitations, 270
- methodology, 263-266, 521-522
paleoseismic applications, 269-270
physiology of lichens, 262-263
size-frequency graphs, 267f
size measurements, 265-266
time range, 263
See also Chemical and biological dating methods
Limitations and maximum utility
- aminostratigraphic dating, 212-215
- cosmogenic methods, 73-74
dendrochronology, 18-19
electron spin resonance, 184-185
lead-210 geochronology, 119
lichenometry, 270
luminescence geochronology, 168
marine invertebrate faunas, zoogeographic correlation, 421-422
obsidian hydration dating, 238
paleomagnetic dating, 353-354
radiocarbon geochronology, 56-57
rock and mineral weathering, 308-309
rock varnish chronometry, 250-255, 257
sclerochronology, 38
soil geomorphology in fault studies, 288
tephrochronology, 373-375
Lisman Formation in the Dead Sea, non-glacial varves, 23
Little Tujunga Region, Los Angeles, ESR dating of movement on the San Gabriel fault, 553-556
Little Tujunga Region, San Gabriel Mountains, California, map showing sample collection sites, 554f
Local correlation, coastline features by geomorphic properties of emergent terraces, 434-435
by pedologic properties of emergent terraces, 435-436
by stratigraphy of nonmarine terrace cover, 436-438
See also Marine terraces dating with relative-age and correlated-age methods
Loess deposits, correlation with deep sea oxygen isotope record, 467f
Loleta ash bed, Hookton Formation, California, junction shards, 361f
1989 Loma Prieta earthquake, fault geometry inferred from, 505f
Long-term slip rates determination, 288
Los Angeles, ESR dating of movement on the San Gabriel fault, 553-556
Lost River fault, antecedent scarps, Borah Peak, Idaho, earthquake, 322, 324-325
Lower limits in sclerochronology, 30-32
Luminescence geochronology, 157-176
apparatus for measurement, 164f
dose rate determination, 167-168
emission spectrum, potassium feldspar, 159f
equivalent dose determination, 163-167
error sources, 168
factors affecting accuracy and precision, 169f
field criteria to optimize application, 169
field sample collection, 161-162
future developments, 170, 173
gamma ray spectrometry, 167-168
geologic cycle, 160
laboratory analysis, 163-168
laboratory criteria to optimize application, 169-170
limitations, 168
methodology, 161-170
optically stimulated luminescence 158-160, 163
paleoseismic applications, 170
sediments as analytes, 160-161
signal measurement, 162-163
time range, 161
See also Radiogenic dating methods
Thermoluminescence data and age estimates from trenches across the Lemhi fault, 543f
Thermoluminescence dating of scarps-related deposits, 541-548
Thermoluminescent age of sediments, Snake River Plain, Idaho, 171f
Lunar craters, impact erosion analyzed by diffusion equation, 332-334

M
Macrofossils in radiocarbon dating, 46, 49
Magnetic polarity time scale, 340f, 350-351
Magnetic susceptibility, 347-348
Magnetostratigraphy, secular variation, 557-562
Mahia Peninsula, New Zealand, terrestrial cover stratigraphy on marine terraces, 437f

Major cosmogenic reactions, 64t

Mammals, Quaternary faunas in North America, 408-409
See also North American land mammal ages

Manganese and iron-rich coating, See Rock varnish

Marine invertebrate faunas, zoogeographic correlation data analysis, 418-419
confidence assessment, 418
field collection methods, 416-417
future developments, 422
geologic settings, 416
interpretation, 418-419
laboratory analysis, 417
limitations, 421-422
methodology, 416-418
sample archiving, 417-418
sample collection, 416
sample preparation, 417
seismic hazards assessments, 419-421
time range, 416

Marine isotope record and regional glacial records, 448-452

Marine stable isotope records, global climate change in, 427-433

Marine terraces dating in south-central California 527-536

Marine terraces dating with relative-age and correlated-age methods, 434-446
See also Global correlation, coastline features Local correlation, coastline features

Mass spectrometry methods
Ar analysis, 78, 91
Pb analysis, 124
See also AMS

Master growth chronologies, crossdating and construction in sclerochronology, 27

Materials for dating
See geologic settings names of materials

Mathematical symbols, definitions, 316t
Maximum horizon index, 284-285
Mazama ash bed, Crater Lake, Oregon, tephra layers, 358t-360
Measurement of lichens
See Lichenometry Measurement theory, 3-4

Methodology
aminostratigraphic dating, 192-207
40Ar/39Ar dating, 86-96
cosmogenic nuclide buildup, 69-71f
dendrochronology, 14-16
electron spin resonance, 181-185
K-Ar dating, 86-96
lead-210 geochronology, 117-118
lichenometry, 263-266, 521-522
luminescence geochronology, 161-170
marine invertebrate faunas, zoogeographic correlation, 416-418
obсидian hydration dating, 228-235
paleomagnetic dating, 342-349
radiocarbon geochronology, 46-54
rock varnish chronometry, 242t-243t, 247-256
sclerochronology, 31-37
soil geomorphology in fault studies, 277-279
tephrochronology, 366-370
uranium series, 101-108
varve dating, 22

Micas, 87-88
Microstoll coral colony, growth patterns, 35f-37
Midwest, U.S., areas of loess, 466f
Mineral etching in rock and mineral weathering, 303-304
Mineral magnetic studies, 347
Mineral separation steps for apatite, zircon, and sphene, 140t
Mineral separation steps for volcanic glass, 141t
Mojave Desert, California eolian activity and dune formation, 465, 468
fluvial aggradation, 457f
Molluscs dated by aminostratigraphy, 191-192
Molluscs, Quaternary faunas in North America, 407-408
See also Shallow-water molluscan provinces [northeastern Pacific]

Morphology of lichens, 262f-263
Mt. Shasta, See Black Butte dacite
Mud or mudstone preferred as samples in paleomagnetic dating, 342

New Hebrides coral paleoseismology, 30-31
tectonic coral emergence, 25
New Madrid earthquakes and tree growth 18
New Madrid Seismic Zone age constraints on paleoliquefaction, 557-562
secular variation magnetostratigraphy 557-562
results, 561-562
NFTA derivatives chromatograms, 196f-197f
Nomenclature, 4-5
Nonlinear models, landform evolution, 334-335
Normal fault surface rupture, deformation patterns 483f, 484
North American Commission on Stratigraphic Nomenclature, 4-5
North American land mammal ages, 379-406
See Also Mammals, Quaternary faunas in North America, 408-409
North American microtine faunal regions, 385-387
North American microtine rodent dispersal events, summary, 384t
North American microtine rodents biochronology, 379-406
development, 382-385
Repenning’s biochronology, 388-399
rodent taxa, distribution, 387f-388f
See also Correlation dating methods North American land mammal ages
Nucleogenic interferences in 40Ar/39Ar dating, 82-83
Numerical-age methods See Isotopic dating methods Radiogenic dating methods Sidereal dating methods

O

18O/16O ratio oxygen isotope variations, 427-429
water vapor fractionation in precipitation, 428-429

Obsidian hydration dating age determination, 232-234
applications, 225t, 235-238
comparisons with other methods, 234-235
data analysis, 232-234
faulted terraces, 236
future developments, 238
glacial chronology, 235-236f
glass chemical composition, 227
hydration rate equation, 224
hydration rate factors, 224-228
hydration rims, 231f
hydration rind, 224f
hydration thickness measurement, 229-232
laboratory analysis, 228-229
limitations, 238
methodology, 228-235
rate constants determinations, 225-227
relative humidity, 227-228
sample collection, 228
sample preparation, 229-231f
split slide holder, 231f
thin section preparation, 229-231f
time range, 228
tilted surfaces, 235-236
volcanic chronology, 236-238
See also Chemical and biological dating methods
Open system dating in uranium series methods 108-109
Optically stimulated luminescence, 158-160, 163
See also Radiogenic dating methods
Oregon, Paleoearthquake dating, 488-489
Paleoseismicity of Alvord Fault, Steens Mountain, 537-540
Paleoseisimology
application of geochronology, 486-494
assessing seismic hazards, 480-486
dating fault activity and paleoearthquakes, 488-489
recurrence intervals, 489-491
sources of geochronologic uncertainty, 492-494
Paleoshorelines, surface exposure dating by cosmogenic nuclides, 72
Paleotemperature equation, 427-428
Paleothermometry, oxygen isotope, 427-428
Pallet Creek site, 518f
Palos Verdes Hills, Los Angeles County, California, terrestrial cover stratigraphy, 438f
Palouse loess, 465
Pampa San Jose, Peru, subvarnish organic matter by scanning electron microscopy 256f
Parent material, effect on rock and mineral weathering, 297
Partial bleach method, equivalent dose determinations, 165
Past earthquakes, evaluation criteria, 487f
210pb analysis (x-counting techniques, 118
[3-counting techniques, 118
See also lead-210 geochronology
Peat accumulation at Pitman Canyon, 566f
Peat in radiocarbon dating, 47
Peat sediments from San Francisco estuary, radiocarbon dates, 499-500
Pedogenic carbonates in radiocarbon dating, 47, 50
Pedogenic clay, 285
Pedogenic minerals, K-A methods, 88
Petrographic examination in tephrochronology, 369-370
Physical weathering, 295
Physiology of lichens, 262-263
Pitman Canyon, paleoseismic record, 563-566
Pits in determination of rock and mineral weathering, 298-299
Plateau method in electron spin resonance techniques, 179

P

231Pa/230Th dating, See Uranium series methods
231Pa/235U dating, See Uranium series methods
Paleomagnetic dating
continuous samples of sediment cores, 344
cryogenic magnetometer, 344
data analysis, 346-349
Earth’s magnetic field, 339-342
field methods, 342-343
future developments, 354
geologic settings, 342
laboratory analysis, 343-346
limitations, 353-354
methodology, 342-349
mud or mudstone preferred as samples, 342
reversal test, 347
sample archiving, 346
sample collection, 342-343
sample preservation, 343
secular variation of the geomagnetic field, 340-341
seismic hazard applications, 349-353
silts preferred as samples, 342
spinner magnetometer, 344
time range, 342

Paleoseismic applications
aggradation events, 461-462
cosmogenic nuclides, 73
dendrochronology, 16-18
electron spin resonance, 182, 183
fission-track geochronology, 147-151
geochronology, 479-495
lacustrine features and global climate change, 476
lead-210 geochronology, 118-119
lichenometry, 269-270
luminescent dating, 170
paleomagnetic dating, 349-353
quaternary terrestrial faunas, 399
sclerocronology 37-38
tephrochronology, 373
varve dating, 22-23

Paleoseismic characterization
active seismic sources, 484-486
detailed mapping, 484-485
evidence of faulting, 494
geomorphic analyses, 485
subsurface investigations, 486
See also Paleoseismic methods
Paleoseismic date refinement, 517-520
Paleoseismicity of the Alvord Fault, Steens Mountain, 537-540
Paleomagnetic dating
confidence assessment, 347-348
data analysis, 346-349
Earth’s magnetic field, 339-342
field methods, 342-343
future developments, 354
geologic settings, 342
laboratory analysis, 343-346
limitations, 353-354
methodology, 342-349
mud or mudstone preferred as samples, 342
reversal test, 347
sample archiving, 346
sample collection, 342-343
sample preservation, 343
secular variation of the geomagnetic field, 340-341
seismic hazard applications, 349-353
silts preferred as samples, 342
spinner magnetometer, 344
time range, 342

Paleoseismic applications
aggradation events, 461-462
cosmogenic nuclides, 73
dendrochronology, 16-18
electron spin resonance, 182, 183
fission-track geochronology, 147-151
geochronology, 479-495
lacustrine features and global climate change, 476
lead-210 geochronology, 118-119
lichenometry, 269-270
luminescent dating, 170
paleomagnetic dating, 349-353
quaternary terrestrial faunas, 399
sclerocronology 37-38
tephrochronology, 373
varve dating, 22-23

Pits in determination of rock and mineral weathering, 298-299
Plateau method in electron spin resonance techniques, 179

231Pa/230Th dating, See Uranium series methods
231Pa/235U dating, See Uranium series methods
INDEX 577

Pliocene-Quaternary unroofing dating, 150
Pliocene-Quaternary volcanics dating, 147, 150
Population method in fission-track geochronology, 142
Population-subtraction method in fission-track geochronology, 141-142
Posts and hat rocks in determination of rock and mineral weathering, 299-300
Potassium analysis, See K analysis
Potassium-argon dating, See K-Ar dating.
Potassium feldspar, thermoluminescence emission spectrum, 159f
Pumice, See Tephra
Quartz-bearing fault rocks dating by electron-spin resonance, 181-182
Quaternary biochronology foundations, 379-380
Quaternary lacustrine stratigraphy, correlation methods, 474f-475
Quaternary landforms and deposits to global climate change correlation, 425-426
Quaternary mammal ages development, 380-381
Quaternary terrestrial and non-marine aquatic faunal groups of North America, 407-411
See also Correlation dating methods

R
Racemization kinetics, 188-191
Racemization of amino acids
See Amino acid racemization
Radioactive decay scheme, 40K-40Ar, 77-78
Radiocarbon dating
See Radiocarbon geochronology
Radiocarbon geochronology 14C atmosphere variations, 42-44
comparison with calendar ages from tree rings, 43-45
comparison with U/Th ages, 43
conventional radiocarbon age, 54
data reporting, 54-55
density separation in samples, 50, 57
technique, 46, 47
field collection methods, 48
Holocene tidal marsh deposits, 497-502
methodology, 46-54, 57
plateaus as method limitations, 44-46
sample collection, 46-48
sample pretreatment
acid-base-acid wash, 57
cellulose extraction, 57
density separation, 57
seismic hazard assessments, 55-56
time range, 43-46
See also 14C
Radiocarbon measurements and tree-ring dating, in dendrochronology, 14-15
Radiogenic dating methods, 3f, 5, 7
See also Electron-spin resonance Fission track geochronology Luminescence geochronology
Optically stimulated luminescence
Rainbow Plateau, Utah, scarp morphology and lateral erosion, 330-332
Reaction wood rings, 17-18
Recent surface faulting, formation of colluvial wedges, 488f
Reef flat microatolls, samples, 32f
Recfot trench wall, 557-559
Regeneration method, equivalent dose determinations, 163-165f
Regional aggradation events correlation to global climate change, 460-461
Relative-age methods, 4-5
Relative-age varnish development, 247-248
Relative sea level changes in San Francisco estuary, 497-502
Repumping's biochronology, 388-399
Reporting of data in radiocarbon geochronology, 54-55
Reptiles, Quaternary faunas in North America, 408
Reversal test, 347
Reverse and thrust faults, deformation patterns, 484f
Rhizocarpus, 262-264
Rinds in rock and mineral weathering, 304-306
Rio Dell ash bed, Rio Dell Formation, California, pumiceous, glass shards, 361f
Rock and mineral weathering age assignment, 307-208
clast-sound velocity, 298
clay alteration and half-life of mica, 302-303
climate, effect on, 295, 297
data analysis, 307-308
environmental factors, 294t
fractured clasts, 298
hammer ring, 298
limitations, 308-309
mineral etching, 303-304
paleoseismic applications, 308
parent material, effect on, 297
pits, 298-299
posts and hat rocks, 299-300
rinds, 304-306
roundness, 300
subsurface techniques, 296t, 302-306
surface boulder frequency, 300
surface clast relief, 300-301
surface oxidation, 301
surface roughness, 301
surface techniques, 296-302
time range, 306-307
topographic setting, effect on, 297
vegetation, effect on, 297
Rock surface stabilization, dating by lichenometry, 262
Rock varnish chronometry
AMS radiocarbon dating, 255-256
applications, 256-257
cation-ratio dating, 248-255
characteristics, 244-246
certainty in results, 257
geologic settings, 246-247
laboratory analysis, 250
limitations, 250-255, 257
methods, 242-243f, 247-256
relative-age varnish development, 247-248
sample collection, 247-249
sample preparation, 255
time range, 249
See also Geomorphic dating methods
Rockland ash bed, Lassen Peak area, California, pumiceous, curvy shards, 361f
Rodents, See North American microtine rodents, Biochronology, 379-406
Roundness in determination of rock and mineral weathering, 300
Salt Springs, California, relative-age varnish development method, 247-248f
Sample archiving
- $^{40}\text{Ar}/^{39}\text{Ar}$ dating, 92
- marine invertebrate faunas, zoogeographic correlation, 417-418
- paleomagnetic dating, 346
- radiocarbon geochronology, 54
- sclerochronology, 34-35

Sample collection
- aminostratigraphic dating, 192-193
- $^{40}\text{Ar}/^{39}\text{Ar}$ dating, 87-88
- cosmogenic nuclide methods, 69
- dendrochronology, 14
- electron spin resonance, 181-182
- fission-track geochronology, 137-138
- K-Ar dating, 87-88
- lead-210 geochronology, 117
- lichenometry, 265
- luminescence geochronology, 161-162, 169
- marine invertebrate faunas, zoogeographic correlation, 416
- obsidian hydration dating, 228
- paleomagnetic dating, 342-343
- radiocarbon geochronology, 46-48
- rock varnish chronometry, 247-249
- sclerochronology, 31-33, 34
- soil geomorphology in fault studies, 279
- tephracronology, 367-369
- Th-Pb geochronology, 124
- U-Pb geochronology, 124
- uranium series methods, 108-109

Sample preparation
- aminostratigraphic dating, 195-196
- $^{40}\text{Ar}/^{39}\text{Ar}$ dating, 89-90
- cosmogenic nuclide methods, 69-70
- dendrochronology, 14
- fission-track geochronology, 138-141
- K-Ar dating, 89-90
- marine invertebrate faunas, zoogeographic correlation, 417
- obsidian hydration dating, 229-231
- radiocarbon geochronology, 49-52, 57
- rock varnish chronology, 255
- sclerochronology, 34
- uranium series methods, 109

Sample preservation
- aminostratigraphic dating, 195, 199
- electron spin resonance, 182
- paleomagnetic dating, 343
- San Andreas earthquake of 1812, tree-ring evidence, 549-552
- San Andreas fault
- location of Wrightwood and Pallet
 Creek sites, 518
- Pitman Canyon, paleoseismic record, 563-566
- plot of ring widths, 15
- uplift, unroofing, and faulting, 150-151
- white fir section on, 18
- San Francisco Bay area
 fault map, 504
- seismic risk assessment, 506-507
- uplift and fault slip rates, 503-508
- San Francisco estuary
 map, 498
- radiocarbon dating of Holocene tidal
 marsh deposits, 497-502
- San Gabriel fault, dating of movement
 by electron-spin resonance, 553-556
- San Luis Obispo County, California,
 modern zoogeographic ranges of
 species, 420
- San Luis Range area, marine-terrace
 sequences
 dating results, 528
 sample locations, 533
- San Nicolas Island, marine terrace inner
 edge elevations, 439
- San Simeon fault zone, marine terraces,
 534
- Scarp morphology and lateral erosion,
 Rainbow Plateau, Utah, 330-332
- Scarp profiles along Alvord fault, 539
- Scarp-like landforms, age from diffusion
 analysis, 313-338
- See also Geomorphic dating methods
- Scarp
 Bonneville shoreline, 319-322
 Borah Peak, Idaho, earthquake, Lost
 River fault, antecedent, 322,
 324-325
- Sclerochronology, coral biological background, 26
 coseismic vertical deformation, 25
 data analysis, 35-36
 depositional environments, 29
 environmental conditions, 28-29
 field collection methods, 33
 future advances, 37-38
 geologic settings, 29
 geophysical environments, 29
 growth pattern, 28
 laboratory analysis, 34-35
 limitations and maximum utility, 38
 master growth chronologies, 27
 methodology, 31-37
- paleoseismic applications, 37-38
- sample preservation, 33-38
- theory of dating, 27-31
- time range, 30-31
- See also Sidereal dating methods
- Sea-level changes, El Nino Southern
 Oscillation events, 29
- Sea-level changes in sclerochronology,
 25, 29-30
- Sea-level changes on Solomon Islands arc, 30
- Seaward Kaikoura range, New Zealand,
 fluvial aggradation, 457
- Secular variation of the geomagnetic
 field, 340-341, 349
- Secular variation magnetostratigraphy,
paleoliquefaction in New Madrid
 Seismic Zone
data, 557-561
 results, 561-562
- Sediment supply in formation of eolian
 deposits, 465
- Sedimentary materials
 intensity of magnetization, 342
 lead-210 dating, 118-119
 luminescence geochronology,
 157-161, 171-172
 U-series dating, 103-104
- Seismic disturbances in trees, 12-13
- Seismic hazard assessments
 aminostratigraphic dating, 207-211
 fission track analysis in San
 Francisco Bay area, 506-507
 marine invertebrate faunas, zoogeographic correlation, 419-421
 radiocarbon geochronology, 55-56
 soil geomorphology in fault studies, 285-288
- Seismic hazard estimation, 517-520
- Seismically altered surfaces, dating by
 tree-ring analysis, 16-17
- Shallow-water molluscan provinces
 (northeastern Pacific), 414
- See also Molluscs
- Shells in radiocarbon dating, 47, 49
- Shielding of surface, 68
- Shoreline landforms within lake basins, 473-474
- Sidereal dating methods, 3f, 5
- See also
 Dendrochronology
 Sclerochronology
 Varve dating
Silicate mineral luminescence, 157-158
Silicate mineral study by electron-spin resonance, 177-179
Sierra Nevada, California, weathering in glacial deposits, 295f
Silts as samples in paleomagnetic dating, 342
Silver Lake, California, relative-age varnish development method, 247-248
Single-grain age data in fission-track geochronology, 144-145
Site selection for soil geomorphology in fault studies, 278
Skeleton plots in dendrochronology, 14
Slip rate at Pitman Canyon, 566
Snake River Plain, Idaho, thermoluminescent sediment age, 171-172f
Soil development index, 283-284f
Soil-fault relationships, 285-287
geochronology
Thermoluminescence dating of scarp-related deposits, 541-548
See also Luminescence geochronology
Thermoluminescence data and age estimates from trenches across the Lemhi fault, 543
See also Luminescence geochronology
Thermoluminescent sediment age, Snake River Plain, Idaho, 171
See also Luminescence geochronology
Theoretical age resolution in U-Pb and Th-Pb geochronology, 122-123
Theory of dating depositional environments, 29
environmental conditions and growth, 28-29
environmental conditions and seismic events, 29
geophysical environments, 29-30
growth patterns, 28
Theory of dating method aminostratigraphic dating, 188-192
40Ar/39Ar dating, 77-85
cosmogenic nuclide buildup, 61-69
dendrochronology, 11-13
diffusion-equation analysis, 315-327
electron spin resonance, 177-179
fission-track geochronology 137-147
K-Ar dating, 77-85
lead-210 geochronology, 115-117
lichenometry, 261-263
luminescence geochronology, 157-161
marine invertebrate faunas, zoogeographic correlation, 416
Paleomagnetic dating, 342
Pb-210 method, 118-119
radiocarbon geochronology, 56-57
rock and mineral weathering, 306-307
rock varnish chronology, 249
sclerochronology, 30-31
soil geomorphology in fault studies, 277
Th-Pb method, 128
U-Pb method, 128
uranium series, 110
Topographic setting, effect on rock and mineral weathering, 297
Total-bleach method, equivalent dose determinations, 165
Total sample dissolution isochron dating, 105-108
Tree-ring analysis, See Dendrochronology
Tree-ring evidence of San Andreas earthquake of 1812, 549-552
Trees, indicators of seismic disturbances, 13
Trenches across the Lemhi fault, thermoluminescence data and age estimates, 543
TSD isochron dating, See Total sample dissolution isochron dating
Tuff sample collection, 89
U

238U-206Pb decay chain, 122
U-Pb geochronology in Quaternary rocks
laboratory analysis, 124-125
methodology, 124-125
sample selection, 124
theoretical age resolution, 122-123
theory, 121-124
uncertainty sources, 123-124
volcanic rocks, 125-128
See also Isotopic dating methods

V

Van Norman reservoir, varved sediments, 22
Varve dating
advantages and disadvantages, 23
future developments, 23
methodology, 22
paleoseismologic applications, 22-23
theory, 21-22
See also Sidereal dating methods
Varves, definition, 21
Vegetation, effect on rock and mineral weathering, 297
Virtual geomagnetic poles, 346-347
Volcanic chronology by obsidian hydration dating, 236-238
Volcanic glasses, 86-97
Volcanic surfaces, surface exposure dating by cosmogenic nuclides, 72
Volcanic rocks
dating by K-Ar, 40Ar/39Ar methods, 85-87
dating by U-Pb and Th-Pb methods, 125-128

Volcanics

dating by fission-track geochronology, 131, 133, 147, 150
sampling rocks and tephras, 137-138

W

Water vapor isotope fractionation in precipitation, 428-429

Watershed models for fluvial responses to global climate change, 456-459
Weapons testing production, 14C, 43
West Yellowstone, Montana, glacial deposits and rhyolite flows, 235-237f
Wood in radiocarbon dating, 46, 49
Wrightwood Creek site, 518f

X-Y-Z

X-radiograph, intertidal coral colony growth, 26f, 27f
X-ray fluorescence in tephrochronology, 370
Xenoliths, 40Ar/39Ar dating, 87
Year of death studies, 16-17
Yucca Mountain, Nevada, cation-leaching curve, 252f, 253
Zeroing in electron spin resonance techniques, 179
Zoogeographic correlation of marine invertebrate faunas, 413-424
Quaternary Geochronology
Methods and Applications

surveys the established and experimental means of dating Quaternary surficial materials. Experts review the basic theory, procedures, accuracy and applications for each method. A series of case studies illuminate the key role of geochronology in Quaternary geology and the emerging field of paleoseismology. This is an authoritative reference for Quaternary scientists, geochronologists, paleoseismologists and students.